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 8 

The transport of carbon into Earth’s mantle is a critical variable in the global carbon cycle, which 9 

affects both climate fluctuations and the redox conditions of the surface and mantle. The largest 10 

unconstrained variables in this cycle are the depth to which carbon in subducting sediments and 11 

altered oceanic crust remains stable, and the relative roles of these components in removing carbon 12 

from the cycle by sequestering it in the deep mantle 1. Inclusions in sublithospheric, or superdeep 13 

diamonds (derived from >250 km) provide an unparalleled avenue from which to study these 14 

questions. Here we present oxygen isotopic measurements of mineral inclusions within diamonds 15 

from Kankan, Guinea. These inclusions are derived from a ~ 700 km deep cross section of the 16 

mantle from lithosphere to uppermost lower mantle. Along with a large isotopic database of 17 

diamond hosts, these data track a predominately altered oceanic crust reservoir for carbon in slabs 18 

at lithospheric to transition zone depths. While the oxygen isotopic compositions of inclusions in 19 

eclogitic diamonds from the cratonic lithosphere are representative of the altered oceanic crust that 20 

now exists as eclogite pods within the cratonic mantle root, inclusions in sublithospheric diamonds 21 

from ~300 to ~600 km depths, have more extreme isotopic signatures. These extreme values indicate 22 

that carbonate-rich subducting slabs undergo melting at these depths. In contrast, lower mantle 23 

minerals and their host diamonds from >660 km depth have C and O isotopic compositions typical 24 

of the convecting mantle. This absence of a recycled signature does not support a solely convecting 25 



mantle source, as macrocrystalline diamonds could not have formed unless carbon was liberated 26 

from the iron-alloys and iron-carbides that dominate the reduced, volatile-poor lower mantle 2. We 27 

suggest that a decarbonated, but still hydrated slab in the uppermost lower mantle can provide the 28 

necessary redox potential to crystallize these diamonds, without disturbing the ambient mantle 29 

isotopic signatures. This transition from carbonate slab melting in the transition zone to 30 

dehydration in the lower mantle confirms a lower mantle barrier for carbon subduction.  31 

 32 

The first seismological images of slabs penetrating the 660 km mantle discontinuity provided evidence for 33 

the transport of oceanic slabs into the lower mantle 3. Nevertheless, the regions of the mantle where 34 

volatiles are lost from the slab into the deep convecting mantle remain poorly understood. Diamonds are 35 

unique in that they directly sample volatiles from these depths. As high-T fractionation 4 cannot account 36 

for all of the isotopic variability observed in sublithospheric diamonds, 13C-depleted signatures of 37 

asthenospheric to transition zone diamonds are often interpreted to reflect the deep subduction of 38 

sediments, rich in reduced organic carbon 5,6. This idea has garnered much attention as the deep 39 

sequestration of reduced organic carbon in sediments is one hypothesis for the production of Earth’s 40 

oxidized atmosphere 7. However, a newly expanded isotopic database implicates carbonates in altered 41 

oceanic crust (AOC) as an alternative source for the 13C-depleted signal 8. The stability of AOC carbonate 42 

at depth, until its partial melting between ~ 300 to 700 km 9,10, suggests that it could be a source of carbon 43 

in many superdeep diamonds 9,11. But, thus far, no geochemical signature has clearly related these natural 44 

samples to a carbonate-rich AOC protolith. Furthermore, the source of carbon for lower mantle diamonds, 45 

a region where carbonate may be exhausted from slabs, is not yet understood. 46 

 47 

To evaluate the relative contributions of sediments, AOC, and convecting mantle to the deep mantle 48 

carbon cycle, we analyzed a suite of superdeep inclusions in diamond for their δ18O signatures – a system 49 

sensitive to the presence of recycled material. Previous measurements of δ18O in superdeep diamonds 50 

have been confined to two studies on asthenospheric and transition zone inclusions from the Jagersfontein 51 



kimberlite (South Africa) and the Juina, Collier, and Machado alluvial deposit (Brazil) 12,13. Here, we 52 

report δ18O from inclusions within a diamond suite from Kankan that carries not only lithospheric and 53 

asthenospheric/transition zone garnets, but also low-Al2O3 (<1.7 wt. %) orthopyroxene (i.e. former 54 

bridgmanite) coexisting with ferropericlase, an assemblage from the uppermost lower mantle (~700 km) 55 

14,15. Thus, the Kankan diamonds and their silicate inclusions provide powerful means to probe the carbon 56 

cycle from lithosphere to lower mantle. 57 

 58 

The measured δ18O and elemental chemistry of lithospheric inclusions from Kankan diamonds are 59 

characteristic of their peridotitic and eclogitic substrates. Peridotitic garnet inclusions from Kankan have a 60 

δ18O of +5.3 to +5.7 ‰, within error of the convecting mantle (+5.5 ‰), whereas eclogitic garnets fall 61 

between +3.8 to +6.1 ‰, which is within the range of δ18O reported for mantle eclogite xenoliths (Fig. 1a, 62 

c). Thus, diamond forming metasomatic fluids or melts must have had low fluid-melt/rock ratio to not 63 

substantially change the δ18O of the AOC protoliths that exist as eclogite pods within the cratonic mantle.  64 

 65 

Unlike lithospheric samples, which can be definitively interpreted as having an eclogitic or peridotitic 66 

paragenesis using traditional major elemental classification schemes 16, sublithospheric majoritic garnets 67 

are more difficult to separate into parageneses, and are often misclassified 11. Because of this, we classify 68 

the majorites using an experimentally calibrated model, where excess Si4+ in the majoritic endmember is 69 

charge-balanced with Na+ in eclogitic systems, or with divalent cations in Na-poor peridotitic 70 

compositions 11. To quantify this scheme, we derive a parameter, Δperidotite, defined as the difference in 71 

divalent cations between the sample and a purely meta-peridotitic majorite, normalized to the difference 72 

between the two endmembers. A Δperidotite of 1 represents a purely eclogitic majorite, whereas a 73 

Δperidotite of 0 represents a purely meta-peridotitic majorite. The following equation defines the 74 

parameter: 75 

 76 



 Δperidotite =  |(𝑀𝑔+𝐶𝑎+𝐹𝑒+𝑀𝑛)𝑠−(𝑚𝑝(𝑆𝑖+𝑇𝑖)𝑠+𝑏𝑝)|
|(𝑚𝑏(𝑆𝑖+𝑇𝑖)𝑠+𝑏𝑒−(𝑚𝑝(𝑆𝑖+𝑇𝑖)𝑠+𝑏𝑝)|

             Equation 1 77 

 78 

where m is the slope of the endmember substitution, b is the y-intercept of the endmember, p and e are the 79 

meta-peridotite and eclogitic endmembers, respectively, and s is the majoritic sample. 80 

 81 

The majority of majoritic garnet inclusions lie between these end-member trends (0 <  Δperidotite < 1), 82 

an intermediate composition termed “meta-pyroxenitic” (Fig. 2a) 11. Because these meta-pyroxenitic 83 

inclusions are intermediate in major element composition, we might also expect their δ18O to be 84 

intermediate compared to the values reported for lithospheric eclogitic and peridotitic garnets. Instead, 85 

meta-pyroxenitic majoritic garnets from Kankan have much more extreme δ18O (+9.1 to +10.5 ‰) than 86 

the Kankan eclogitic garnet inclusions of lithospheric origin (+3.8 to +6.1 ‰). Meta-pyroxenitic majorites 87 

from the Juina region (Brazil) 13 and Jagersfontein (S. Africa) diamonds 12 also have a significantly higher 88 

δ18O mode than eclogitic garnet inclusions in diamonds worldwide (Fig. 1c), and extend to even more 89 

extreme values (+12 ‰) . Because no majorite inclusion in diamond has yet been measured with δ18O of 90 

< +7.5 ‰ (n=24) and only 4% of data from a composite model of AOC approaches the median δ18O of 91 

majorites 17, with < 0.05% extending to +12 ‰, we infer that there must be a unique source for the highly 92 

elevated δ18O in meta-pyroxenitic superdeep inclusions. 93 

  94 



 95 

Figure 1. (a) Oxygen isotope composition (δ18OVSMOW = ((18𝑂

16𝑂
)𝑠𝑎𝑚𝑝𝑙𝑒 (18𝑂

16𝑂
)𝑉𝑆𝑀𝑂𝑊 − 1) 𝑥 1000⁄ ‰) of silicate 96 

inclusions and (b) carbon isotope composition (δ13CPDB = ((13𝐶

12𝐶
)𝑠𝑎𝑚𝑝𝑙𝑒 (13𝐶

12𝐶
)𝑃𝐷𝐵 − 1) 𝑥 1000‰⁄ ) for diamond hosts 18 97 

versus depth for a suite of Kankan diamonds. Errors are 2σ standard deviation. Pressure and depth estimates are 98 

plotted for majoritic garnets 19, whereas formation depth for retrogressed bridgmanites is determined based on their 99 

low Al content 15. MORB oxygen and carbon isotopic ranges are indicated above graphs 20–23. Interpreted 100 

environments of formation are indicated on the right. (c) δ18O histograms for eclogitic 17,24,25 and majoritic garnet 101 

12,13 inclusions. Also plotted are probability density functions (PDF, bandwidth of 0.2 ‰) of eclogitic garnets from 102 

mantle xenoliths 26 and AOC carbonates (bandwidth of 1.9 ‰) 8. Note that eclogitic and majoritic garnet inclusions 103 

have different modes, with majoritic garnets shifted towards higher δ18O values. (d) δ13C histograms of eclogitic and 104 

majoritic garnet-bearing diamonds, and a PDF (bandwidth of 1.17 ‰) for AOC carbonate 8. See supplementary 105 

references. The scale is different to that in Fig. 1b. 106 



 107 

Figure 2. (a) Divalent cations (Fetotal, Mg, Ca, Mn) versus Si and Ti per formula unit ([O]=12) in Kankan, 108 

Jagersfontein, and Juina region majorites (after Kiseeva et al., 2013). Red line is the substitution typical for meta-109 

peridotitic associations. Blue line is the substitution typical for meta-basaltic/eclogitic compositions. Substitution 110 

lines begin at the median value for eclogitic garnets (Si + Ti of 2.96, divalent cations of 3.11) 27. (b) Majorite Mg# 111 

and the parameter Δperidotite, which indicates an individual inclusion’s deviation from the meta-peridotitic 112 

substitution (Δperidotite of 0 is meta-peridotitic, Δperidotite of 1 is meta-basaltic/eclogitic). The histogram and the 113 

secondary axis show the distribution in Mg# of lithospheric eclogitic and peridotitic garnet inclusions (blue and red 114 

histograms respectively; see supplementary references). (c) δ18O versus Δperidotite values of majorites.  Arrows 115 

trends from purely eclogitic compositions (high Δperidotite) towards more meta-peridotitic compositions (low 116 

Δperidotite). (d) Cr/Al and δ18O in majorites trends from eclogitic majorites (low Cr/Al) to more meta-peridotitic 117 

majorites with lower δ18O. Red line is a linear regression (r2 = 0.6) for the Jagersfontein data. Errors are 2σ standard 118 

deviation. 119 

 120 

  121 
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Two potential reservoirs of high δ18O include sediments and AOC. Both reservoirs contain distinct 122 

carbon-bearing constituents. Sediments are generally dominated by “marine carbonate”, but may be 123 

locally enriched in organic carbon from marine and terrestrial organisms living near continental margins, 124 

called “reduced organic-rich carbon” 1. In comparison, much of the carbon present in AOC carbon is the 125 

carbonate which precipitated in equilibrium with dissolved inorganic carbon (DIC), called “DIC-126 

equilibrium carbonate”  8. However, recent studies have documented that AOC also includes carbonate 127 

precipitated from biologically/kinetically fractionated DIC 8. We call this 13C-depleted endmember 128 

“biogenic AOC carbonate”.  129 

 130 

The recent identification of 13C-depleted biogenic AOC carbonate 8 challenges the assumption that 13C 131 

depleted diamonds must originate from deeply subducted sediment 4,6. In order to further examine the 132 

source of the 13C-depleted and 18O-enriched signal, we examine the database of δ15N in diamond (Fig. 3) - 133 

a less ambiguous isotopic tracer to discriminate between AOC and sediment sources. We find that nearly 134 

20% of all eclogitic diamonds have lower δ15N than the mantle (-5 ± 2 ‰), and >80% have δ15N < 0, 135 

suggesting that the subducted endmember must have strongly negative δ15N. Organic-rich sediments 136 

cannot satisfy this requirement, as their δ15N values are almost exclusively positive 28, but AOC spans a 137 

large range of δ15N (-12 to +10 ‰), reflecting 15N depletion in high-T clays and 15N enrichment in low-T 138 

clays 29,30. Thus, following Li et al. (2019), we suggest that the large isotopic field that defines most 139 

eclogitic diamonds is defined by mixing between three AOC endmembers: 1) nitrogen-bearing high-T 140 

clay with mantle-derived carbon, 2) nitrogen-bearing low-T clay with biogenic AOC carbonate or 3) 141 

nitrogen-bearing low-T clay with DIC-equilibrium carbonate 8. This importance of AOC for diamond 142 

formation is demonstrated only for lithospheric diamonds, but if sediment is uncommon as a carbon 143 

source at these shallow depths, it is likely to be even scarcer in the asthenosphere and transition zone.  144 

Interestingly, we note that all published asthenospheric and transition zone diamonds have δ15N > 0 (Fig. 145 

3), suggesting that diamond formation in that region of the mantle is driven strictly by the uppermost, 146 

low-T AOC (i.e. endmembers 2 and 3). 147 



 148 

Figure 3. Worldwide database of δ13C and δ15N for eclogitic diamonds of lithospheric origin and those of superdeep 149 

origin. The convecting upper mantle isotopic signature is represented by the grey bands. Also indicated are the three 150 

endmembers produced from five different constituents – 15N depleted high-T clay, 15N enriched low-T clay, 151 

convecting mantle carbon, and carbon from DIC-equilibrium carbonate and biogenic AOC carbonate 8. Mixing lines 152 

between the endmembers and the mantle are N/Cmantle / N/CAOC of 50:1 and 1:50 (see discussion in ref 8). Superdeep 153 

diamonds include those of asthenospheric and transition zone (TZ) origin (majorite and Ca-silicate inclusions), 154 

lower mantle origin (ferropericlase + MgSiO3/CaSiO3 inclusions), and diamonds of uncertain super-deep origin 155 

(e.g., ferropericlase inclusions). Note that asthenospheric/TZ diamonds have exclusively positive δ15N, but variable 156 

δ13C.  Errors are smaller than symbols. 157 

 158 

A carbonate-rich AOC origin for diamond is further supported by our study of majoritic inclusions. Not 159 

only are the majoritic inclusions offset towards the higher δ18O values recorded in carbonates (Fig. 1c), 160 

but the formation depths of these majorites (7-19 GPa; Fig S4) also correlate well with the 161 

experimentally-derived pressures at which carbonated slabs melt (9-21 GPa 31). These experiments 162 

demonstrate that the carbonatitic melt derived from the slab will crystallize both majoritic garnet and 163 

diamond after injection into and reaction with the surrounding reduced convecting mantle 9,10,32. The high-164 



Na, low Cr and Mg# majorites reflect crystallization products from slab carbonatite that experienced little 165 

mantle contamination (i.e. high melt/rock ratios) and short migration paths before redox freezing (Fig. 2b, 166 

d). Increasing reaction between the melt and the convecting mantle (melt/mantle <2; Fig. S3) gradually 167 

raises the Cr content and the Mg# of the majorites towards peridotitic values. Thus, this reaction between 168 

AOC derived carbonatite and convecting mantle accounts for the intermediate “mixed” elemental 169 

compositions of these majoritic garnets.  170 

 171 

The importance of AOC as a source for lithospheric to transition zone diamonds has implications for the 172 

efficiency with which carbon is recycled within Earth’s mantle. The absence of a clear sedimentary 173 

carbon signal at diamond-forming depths suggests that sedimentary volatiles may be recycled back to the 174 

surface during arc volcanism or stored in shallow accretionary prisms 5. This observation is at odds with 175 

the hypothesis that an oxidized atmosphere could have been produced at ~2.5 Ga due to the deep 176 

subduction and sequestration of reduced sedimentary carbon 1,7. Instead, an oxidized atmosphere must 177 

have been produced via other means (see 33 for review of possible mechanisms).   178 

 179 

Whereas the strong 18O enrichment in majoritic garnets can be related to a carbonated slab in the 180 

asthenosphere/transition zone, the first δ18O measurements of a lower mantle retrogressed bridgmanites 181 

show negligible oxygen from recycled crust. Instead, their δ18O (+5.3 to +5.8 ‰), host diamond δ13C (-182 

3.5 to -4.1 ‰ 18), and average Mg# (95.0 and 86.7 for bridgmanite and associated ferropericlase 183 

inclusions, respectively) are all indicative of a fertile pyrolite-like composition (Table S3) 34,35.  This lack 184 

of a crustal signature is unusual in sublithospheric diamonds 36, likely because diamond is rarely stable in 185 

the metal-bearing convecting mantle that is found at > 8 GPa 37, unless C concentrations are extremely 186 

elevated above typical (~50 ppm) 2,38.  Since the convecting lower mantle has ~1 wt. % metal 37, and 187 

likely no more than 50 ppm C, iron metal is the dominant carbon-bearing phase 2,38. In order to produce 188 

macrocrystalline lower mantle diamonds 39, their constituent carbon needs to be liberated and locally 189 

concentrated. Metal alloys at lower mantle pressures have been shown to be unstable in a hydrated 190 



environment 40, indicating that other carbon-bearing phases, such as diamond, will become more stable. 191 

The final stages of slab dehydration occur in the uppermost lower mantle 41 and would introduce 192 

negligible non-convecting mantle oxygen (i.e. slab-derived H2O) into the system. Therefore, we propose 193 

that carbonate-depleted, but still hydrated, subducting oceanic slabs can supply the necessary redox 194 

gradients and metasomatic mobilization of ambient carbon for lower mantle diamond formation, without 195 

extensively changing the original ambient mantle isotopic signature.  196 

 197 

The contrasting isotopic composition of diamonds and their silicate inclusions at lithospheric, transition 198 

zone, and lower mantle depths suggest profound differences in modes of diamond formation, and the 199 

behavior of volatiles through these mantle regions. Here we document geochemical evidence for the deep 200 

cycling of carbonate in AOC and its role in forming both lithospheric and superdeep diamonds, and their 201 

inclusions. In contrast, diamonds from the uppermost lower mantle show no trace of a subducted 202 

signature, and may have crystallized after a dehydrating slab triggered carbon liberation from metallic 203 

hosts in the surrounding mantle. The transition from diamond formation in a slab-derived carbonatitic 204 

medium in the transition zone to carbonate-free slab dewatering in the ambient lower mantle is consistent 205 

with the notion that it is difficult to transport crustal carbonates to lower mantle depths along reasonable 206 

slab thermal trajectories 9, and suggests that there may indeed be a barrier to carbon subduction above the 207 

lower mantle.   208 



 209 

 210 

Figure 4. Diamonds formed in the lithosphere, transition zone, and lower mantle are brought to the surface by 211 

convective mantle circulation, plume ascent, and/or kimberlitic magmatism. (a) Lithospheric diamond forms by 212 

fluid or melt metasomatism of eclogitic and peridotitic substrates. The range in δ18O for eclogitic and peridotitic 213 

garnet inclusions is buffered by the host rocks, because of low fluid-melt/rock ratios. (b) In the transition zone, a 214 

carbonated subducting oceanic slab is heated above its solidus temperature to produce carbonatite. Diamonds and 215 

majoritic garnets inclusions crystallize during the reaction between the carbonatitic melt and the reduced convecting 216 

mantle. High melt/rock ratios and short migration paths produce majorite inclusions with meta-basaltic compositions 217 

and extreme δ18O values, directly reflecting the local melt sources (carbonated AOC). Longer melt migration paths 218 

into the mantle “hanging wall” lead to interaction with larger volumes of convecting mantle, which is reflected in 219 

the lower δ18O and increasingly ultrabasic, meta-pyroxenitic character of the majorite inclusions. (c) As the slab 220 

penetrates into the lower mantle, the negative pressure-temperature slope (i.e. Clapeyron slope) of the post-spinel 221 

transition 42,43 and the delayed garnet to perovskite transition in metabasaltic lithologies 44 retards the formation of 222 

lower mantle minerals (dotted white line). The transition to a lower mantle mineralogy leads to slab dehydration and 223 

hydration of the surrounding mantle. The hydrated ambient mantle releases carbon from its metallic iron hosts to 224 

form diamond.  225 

226 
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Methods 362 

Enstatite and garnet inclusions in diamond were analyzed using a Cameca IMS 1280 multicollector ion 363 

microprobe with ~2 nA 33Cs+ primary beam and 20 keV impact energy.  Analytical methods and standards 364 

for garnets are detailed by Ickert and Stern (2013). The presence of high-Cr2O3 lithospheric garnets 365 

required the development of a new matrix correction. Olivine and high-Cr2O3 garnet pairs from depleted 366 

peridotite xenoliths were cast into epoxy and pressed into indium mounts along with garnet and olivine 367 

reference material. Olivine δ18O values were all within error of mantle values, suggesting that associated 368 

garnets should be also within the expected normal mantle δ18O range. Instead, a plot of garnet Cr2O3 vs. 369 

δ18O defines a positive slope that reaches ~1 ‰ above the mantle range at high Cr2O3 contents (Fig. S1). 370 

A Cr-related matrix effect has been previously suggested 46, but variable laser fluorination yields of Cr-371 

rich minerals have inhibited a robust determination of the calibration. Our method bypasses the need for 372 

laser fluorination of high Cr-garnets, being instead based on laser fluorination of a low Cr-garnet (S0068) 373 

and a reasonable assumption of mineral isotopic equilibrium at mantle temperatures. The 95% confidence 374 

uncertainty estimates for δ18OVSMOW for garnets average ±0.29 ‰. Enstatite δ18O measurements also 375 

required the development of a new calibration for Mg# using laser fluorination results 47 for sample F866 376 

(94.1 Mg#) and CCIM standard S0170 (91.2 Mg#). For analyses of unknown enstatites, the 95% 377 

confidence uncertainty estimates for δ18OVSMOW average ±0.21 ‰. Adjacent to each ion probe crater, 378 

major element data were collected on a Cameca SX100 with 5 wavelength dispersive spectrometers at 20 379 

keV energy, 20 nA of beam current at 1 μm diameter. The counting time was 30 seconds for all elements. 380 

Detection limits are available in Table S1 and standards are reported in Table S2.  381 


