412 research outputs found

    The Supernova Remnant G296.7-0.9 in X-rays

    Full text link
    Aims: We present a detailed study of the supernova remnant (SNR) G296.7-0.9 in the 0.2-12 keV X-ray band. Methods: Using data from XMM-Newton we performed a spectro-imaging analysis of G296.7-0.9 in order to deduce the basic parameters of the remnant and to search for evidence of a young neutron star associated with it. Results: In X-rays the remnant is characterized by a bright arc located in the south-west direction. Its X-ray spectrum can best be described by an absorbed non-equilibrium collisional plasma model with a hydrogen density of N_H=1.24_{-0.05}^{+0.07} x 10^{22} cm^{-2} and a plasma temperature of 6.2^{+0.9}_{-0.8} million Kelvin. The analysis revealed a remnant age of 5800 to 7600 years and a distance of 9.8_{-0.7}^{+1.1} kpc. The latter suggests a spatial connection with a close-by HII region. We did not find evidence for a young neutron star associated with the remnant.Comment: accepted by A&A, 5 pages, 2 figure

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter

    A New Technique for Detecting Supersymmetric Dark Matter

    Full text link
    We estimate the event rate for excitation of atomic transition by photino-like dark matter. For excitations of several eV, this event rate can exceed naive cross-section by many orders of magnitude. Although the event rate for these atomic excitation is smaller than that of nuclear recoil off of non-zero spin nuclei, the photons emitted by the deexcitation are easier to detect than low-energy nuclear recoils. For many elements, there are several low-lying states with comparable excitation rates, thus, spectral ratios could be used to distinguish signal from background.Comment: 6 pages plain te

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables

    Exploring the supernova remnant G308.4-1.4

    Full text link
    Aims: We present a detailed X-ray and radio wavelength study of G308.4-1.4, a candidate supernova remnant (SNR) in the ROSAT All Sky Survey and the MOST supernova remnant catalogue, in order to identify it as a SNR. Methods: The SNR candidate and its central sources were studied using observations from the Chandra X-ray Observatory, SWIFT, the Australian Telescope Compact Array (ATCA) at 1.4 and 2.5 GHz and WISE infrared observation at 24 μ\mum. Results: We conclude that G308.4-1.4 is indeed a supernova remnant by means of its morphology matching at X-ray, radio and infrared wavelength, its spectral energy distribution in the X-ray band and its emission characteristics in the radio band. G308.4-1.4 is a shell-type SNR. X-ray, radio and infrared emission is seen only in the eastern part of the remnant. The X-ray emission can best be described by an absorbed non-equilibrium collisional plasma with a hydrogen density of nH=(1.02±0.04)×1022n_\mathrm{H}=(1.02\pm 0.04) \times 10^{22} cm2^{-2}, a plasma temperature of 6.30.7+1.26.3^{+1.2}_{-0.7} million Kelvin and an under-abundance of Iron, Neon and Magnesium, as well as an overabundance in Sulfur with respect to the solar values. The SNR has a spectral index in the radio band of α=0.7±0.2\alpha=-0.7\pm0.2. A detailed analysis revealed that the remnant is at a distance of 6 to 12 kpc and the progenitor star exploded 5000\sim 5000 to 7500 years ago. Two faint X-ray point sources located near to the remnant's geometrical center are detected. Both sources have no counterpart at other wavelengths, leaving them as candidates for the compact remnant of the supernova explosion.Comment: 12 pages, 11 figures, accepted by A&A, revised draf

    N-body simulations of the Magellanic Stream

    Full text link
    A suite of high-resolution N-body simulations of the Magellanic Clouds -- Milky Way system are presented and compared directly with newly available data from the HI Parkes All-Sky Survey (HIPASS). We show that the interaction between Small and Large Magellanic Clouds results in both a spatial and kinematical bifurcation of both the Stream and the Leading Arm. The spatial bifurcation of the Stream is readily apparent in the HIPASS data, and the kinematical bifurcation is also tentatively identified. This bifurcation provides strong support for the tidal disruption origin for the Magellanic Stream. A fiducial model for the Magellanic Clouds is presented upon completion of an extensive parameter survey of the potential orbital configurations of the Magellanic Clouds and the viable initial boundary conditions for the disc of the Small Magellanic Cloud. The impact of the choice of these critical parameters upon the final configurations of the Stream and Leading Arm is detailed.Comment: Accepted by MNRAS, 07 Jun 2006. 14 pages, 14 figures, 3 tables. LaTeX (mn2e.sty). File with decent resolution images (strongly recommended) available at http://astronomy.swin.edu.au/~tconnors/publications/ . References added; distance and HI-LOres difference figures added; clearer figures; discussion added to, but conclusions unchange

    A Sino-German λ\lambda6\ cm polarization survey of the Galactic plane VI. Discovery of supernova remnants G178.2-4.2 and G25.1-2.3

    Full text link
    Supernova remnants (SNRs) were often discovered in radio surveys of the Galactic plane. Because of the surface-brightness limit of previous surveys, more faint or confused SNRs await discovery. The Sino-German λ\lambda6\ cm Galactic plane survey is a sensitive survey with the potential to detect new low surface-brightness SNRs. We want to identify new SNRs from the λ\lambda6\ cm survey map of the Galactic plane. We searched for new shell-like objects in the λ\lambda6\ cm survey maps, and studied their radio emission, polarization, and spectra using the λ\lambda6\ cm maps together with the λ\lambda11\ cm and λ\lambda21\ cm Effelsberg observations. Extended polarized objects with non-thermal spectra were identified as SNRs. We have discovered two new, large, faint SNRs, G178.2-4.2 and G25.1-2.3, both of which show shell structure. G178.2-4.2 has a size of 72 arcmin x 62 arcmin with strongly polarized emission being detected along its northern shell. The spectrum of G178.2-4.2 is non-thermal, with an integrated spectral index of α=0.48±0.13\alpha = -0.48\pm0.13. Its surface brightness is Σ1GHz=7.2x1023Wm2Hz1sr1\Sigma_{1 GHz} = 7.2 x 10^{-23}{Wm^{-2} Hz^{-1} sr^{-1}}, which makes G178.2-4.2 the second faintest known Galactic SNR. G25.1-2.3 is revealed by its strong southern shell which has a size of 80 arcmin x 30\arcmin. It has a non-thermal radio spectrum with a spectral index of α=0.49±0.13\alpha = -0.49\pm0.13. Two new large shell-type SNRs have been detected at λ\lambda6\ cm in an area of 2200 deg^2 along the the Galactic plane. This demonstrates that more large and faint SNRs exist, but are very difficult to detect.Comment: 8 pages, 8 figures, accepted by Astronomy and Astrophysics. For the version with high resolution figures, please go to http://zmtt.bao.ac.cn/6cm/papers/2newSNR.pd

    Evidence for Dark Matter Annihilation from Galactic Gamma Rays?

    Full text link
    The diffuse galactic EGRET gamma ray data show a clear excess for energies above 1 GeV in comparison with the expectations from conventional galactic models. The excess is seen with the same spectrum in all sky directions, as expected for Dark Matter (DM) annihilation. This hypothesis is investigated in detail. The energy spectrum of the excess is used to limit the WIMP mass to the 50-100 GeV range, while the skymaps are used to determine the halo structure, which is consistent with a triaxial isothermal halo with additional enhancement of Dark Matter in the disc. The latter is strongly correlated with the ring of stars around our galaxy at a distance of 14 kpc, thought to originate from the tidal disruption of a dwarf galaxy. It is shown that this ring of DM with a mass of 21011M\approx 2\cdot 10^{11} M_\odot causes the mysterious change of slope in the rotation curve at R=1.1R0R=1.1R_0 and the large local surface density of the disc. The total mass of the halo is determined to be 31012M3\cdot 10^{12} M_\odot. A cuspy profile is definitely excluded to describe the gamma ray data. These signals of Dark Matter Annihilation are compatible with Supersymmetry for boost factors of 20 upwards and have a statistical significance of more than 10σ10\sigma in comparison with the conventional galactic model. The latter combined with all features mentioned above provides an intriguing hint that the EGRET excess is indeed indirect evidence for Dark Matter Annihilation.Comment: To be published in Proc. of DM 2004, Feb. 2004, Los Angeles; updated references and somewhat improved fits in new versio
    corecore