8,501 research outputs found
Strings in gravity with torsion
A theory of gravitation in 4D is presented with strings used in the material
action in spacetime. It is shown that the string naturally gives rise to
torsion. It is also shown that the equation of motion a string follows from the
Bianchi identity, gives the identical result as the Noether conservation laws,
and follows a geodesic only in the lowest order approximation. In addition, the
conservation laws show that strings naturally have spin, which arises not from
their motion but from their one dimensional structure.Comment: 16 page
Migration with local public goods and the gains from changing places
Without public goods and under fairly standard assumptions, in Hammond and Sempere (J Pub Econ Theory, 8: 145â170, 2006) we show that freeing migration enhances the potential Pareto gains from free trade. Here, we present a generalization allowing local public goods subject to congestion. Unlike the standard literature on fiscal externalities, our result relies on fixing both local public goods and congestion levels at their status quo values. This allows constrained efficient and potentially Pareto improving population exchanges regulated only through appropriate residence charges, which can be regarded as Pigouvian congestion taxes
Rations for fattening range lambs
Caption title.Mode of access: Internet
Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor
In the framework of spacetime with torsion and without curvature, the Dirac
particle spin precession in the rotational system is studied. We write out the
equivalent tetrad of rotating frame, in the polar coordinate system, through
considering the relativistic factor, and the resultant equivalent metric is a
flat Minkowski one. The obtained rotation-spin coupling formula can be applied
to the high speed rotating case, which is consistent with the expectation.Comment: 6 page
Random-walk approach to mapping nodal regions of N-body wave functions: Ground-state Hartree-Fock wave functions for Li-C
Despite the widespread acceptance of the relevance of the nodes of oneâbody electronic wave functions (atomic or molecular orbitals) in determining chemical properties, relatively little is known about the corresponding nodes of manyâbody wave functions. As an alternative to mapping the nodal surfaces present in the ground states of manyâelectron systems, we have focused instead on the structural domains implied by these surfaces. In the spirit of Monte Carlo techniques, the nodal hypervolumes of a series of atomic Nâbody HartreeâFock level electronic wave functions have been mapped using a randomâwalk simulation in 3N dimensional configuration space. The basic structural elements of the domain of atomic or molecular wave functions are identified as nodal regions (continuous volumes of the same sign) and permutational cells (identical building blocks). Our algorithm determines both the relationships among nodal regions or cells (topology) as well as the geometric properties within each structural domain. Our results indicate that groundâstate HartreeâFock wave functions generally consist of four equivalent nodal regions (two positive and two negative), each constructed from one or more permutational cells. We have developed an operational method to distinguish otherwise identical permutational cells. The limitations and most probable sources of error associated with this numerical method are discussed as are directions for future research
A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells
The generating function for a particular class of characters of SU(n)
We compute the generating function for the characters of the irreducible
representations of SU(n) whose associated Young diagrams have only two rows
with the same number of boxes. The result is a rational determinantal
expression in which both the numerator and the denominator have a simple
structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure
Explicitly correlated trial wave functions in Quantum Monte Carlo calculations of excited states of Be and Be-
We present a new form of explicitly correlated wave function whose parameters
are mainly linear, to circumvent the problem of the optimization of a large
number of non-linear parameters usually encountered with basis sets of
explicitly correlated wave functions. With this trial wave function we
succeeded in minimizing the energy instead of the variance of the local energy,
as is more common in quantum Monte Carlo methods. We applied this wave function
to the calculation of the energies of Be 3P (1s22p2) and Be- 4So (1s22p3) by
variational and diffusion Monte Carlo methods. The results compare favorably
with those obtained by different types of explicitly correlated trial wave
functions already described in the literature. The energies obtained are
improved with respect to the best variational ones found in literature, and
within one standard deviation from the estimated non-relativistic limitsComment: 19 pages, no figures, submitted to J. Phys.
- âŠ