8,501 research outputs found

    Strings in gravity with torsion

    Get PDF
    A theory of gravitation in 4D is presented with strings used in the material action in U4U_4 spacetime. It is shown that the string naturally gives rise to torsion. It is also shown that the equation of motion a string follows from the Bianchi identity, gives the identical result as the Noether conservation laws, and follows a geodesic only in the lowest order approximation. In addition, the conservation laws show that strings naturally have spin, which arises not from their motion but from their one dimensional structure.Comment: 16 page

    Migration with local public goods and the gains from changing places

    Get PDF
    Without public goods and under fairly standard assumptions, in Hammond and Sempere (J Pub Econ Theory, 8: 145–170, 2006) we show that freeing migration enhances the potential Pareto gains from free trade. Here, we present a generalization allowing local public goods subject to congestion. Unlike the standard literature on fiscal externalities, our result relies on fixing both local public goods and congestion levels at their status quo values. This allows constrained efficient and potentially Pareto improving population exchanges regulated only through appropriate residence charges, which can be regarded as Pigouvian congestion taxes

    Rations for fattening range lambs

    Get PDF
    Caption title.Mode of access: Internet

    Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor

    Full text link
    In the framework of spacetime with torsion and without curvature, the Dirac particle spin precession in the rotational system is studied. We write out the equivalent tetrad of rotating frame, in the polar coordinate system, through considering the relativistic factor, and the resultant equivalent metric is a flat Minkowski one. The obtained rotation-spin coupling formula can be applied to the high speed rotating case, which is consistent with the expectation.Comment: 6 page

    Random-walk approach to mapping nodal regions of N-body wave functions: Ground-state Hartree-Fock wave functions for Li-C

    Get PDF
    Despite the widespread acceptance of the relevance of the nodes of one‐body electronic wave functions (atomic or molecular orbitals) in determining chemical properties, relatively little is known about the corresponding nodes of many‐body wave functions. As an alternative to mapping the nodal surfaces present in the ground states of many‐electron systems, we have focused instead on the structural domains implied by these surfaces. In the spirit of Monte Carlo techniques, the nodal hypervolumes of a series of atomic N‐body Hartree–Fock level electronic wave functions have been mapped using a random‐walk simulation in 3N dimensional configuration space. The basic structural elements of the domain of atomic or molecular wave functions are identified as nodal regions (continuous volumes of the same sign) and permutational cells (identical building blocks). Our algorithm determines both the relationships among nodal regions or cells (topology) as well as the geometric properties within each structural domain. Our results indicate that ground‐state Hartree–Fock wave functions generally consist of four equivalent nodal regions (two positive and two negative), each constructed from one or more permutational cells. We have developed an operational method to distinguish otherwise identical permutational cells. The limitations and most probable sources of error associated with this numerical method are discussed as are directions for future research

    A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells

    The generating function for a particular class of characters of SU(n)

    Get PDF
    We compute the generating function for the characters of the irreducible representations of SU(n) whose associated Young diagrams have only two rows with the same number of boxes. The result is a rational determinantal expression in which both the numerator and the denominator have a simple structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure

    Explicitly correlated trial wave functions in Quantum Monte Carlo calculations of excited states of Be and Be-

    Full text link
    We present a new form of explicitly correlated wave function whose parameters are mainly linear, to circumvent the problem of the optimization of a large number of non-linear parameters usually encountered with basis sets of explicitly correlated wave functions. With this trial wave function we succeeded in minimizing the energy instead of the variance of the local energy, as is more common in quantum Monte Carlo methods. We applied this wave function to the calculation of the energies of Be 3P (1s22p2) and Be- 4So (1s22p3) by variational and diffusion Monte Carlo methods. The results compare favorably with those obtained by different types of explicitly correlated trial wave functions already described in the literature. The energies obtained are improved with respect to the best variational ones found in literature, and within one standard deviation from the estimated non-relativistic limitsComment: 19 pages, no figures, submitted to J. Phys.
    • 

    corecore