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Despite the widespread acceptance of the relevance of the nodes of one-body electronic wave 
functions (atomic or molecular orbitals) in determining chemical properties, relatively 
little is known about the corresponding nodes of many-body wave functions. As an alternative 
to mapping the nodal surfaces present in the ground states of many-electron systems, we 
have focused instead on the structural domains implied by these surfaces. In the spirit of Monte 
Carlo techniques, the nodal hypervolumes of a series of atomic N-body Hartree-Fock 
level electronic wave functions have been mapped using a random-walk simulation in 3N 
dimensional configuration space. The basic structural elements of the domain of atomic 
or molecular wave functions are identified as nodal regions (continuous volumes of the same 
sign) and permutational cells (identical building blocks). Our algorithm determines 
both the relationships among nodal regions or cells (topology) as well as the geometric 
properties within each structural domain. Our results indicate that ground-state Hartree-Fock 
wave functions generally consist of four equivalent nodal regions (two positive and two 
negative), each constructed from one or more permutational cells. We have developed an 
operational method to distinguish otherwise identical permutational cells. The 
limitations and most probable sources of error associated with this numerical method are 
discussed as are directions for future research. 

I. INTRODUCTION 

One of the most fundamental attributes of wave func- 
tions is nodal structure. Nodes serve to divide the domain 
of the wave function into regions of positive and negative 
sign. For a given atomic or molecular system, there is a 
one-to-one correspondence between the nodal structure 
and the electronic state. Because mental imagery is limited 
to three dimensions, one-body wave functions for systems 
such as the particle-in-a-box, harmonic oscillator, or hy- 
drogenlike atoms are often used to introduce the subject. 
Since wave functions for N-body systems have a 3N- 
dimensional domain (e.g., 6 for the electronic wave func- 
tion of helium), intuition will not generally serve as a use- 
ful guide in trying to visualize the nodes of a many-body 
wave function. Anderson’.’ and Bamett et aL3 character- 
ized the nodes of very simple many-body systems (He and 
H,, respectively) by constructing three-dimensional (3D) 
cross sections through the full 3N-dimensional space by 
fixing the positions of all but one particle. Unfortunately, 
the problem of building up 3N space from 3D slices scales 
exponentially with N and cannot be readily extended to 
larger systems. In a recent article, Ceperley provided a 
careful analysis and summary of what little is known about 
the nodes of many-body fermion wave functions and in- 

duced some of the general properties that the nodes of the 
wave function for an electron gas are expected to possess.4 
Our goal is to broaden the scope of this seminal work to 
chemical systems (e.g., bound atomic systems) and to de- 
duce specific geometric properties of wave functions by 
computational studies. 

Ab initio wave functions such as Hartree-Fock (HF), 
multiconfigurational HF, and configuration interaction 
(CI) are variational. Because HF energies are not affected 
by first-order changes in the wave function, they are rela- 
tively insensitive to small perturbations in the placement of 
nodal surfaces. Furthermore, because contributions to the 
variational integral are proportional to the square of the 
wave function, such calculations are necessarily biased to- 
ward providing better descriptions of regions where ( \I, 1 
has large amplitude. This property has made possible tre- 
mendous progress in the ab initio calculation of energies, 
but properties that depend sensitively upon a more global 
description of Y (e.g., multipole moments) have not fared 
as well. Indeed, it is usually considered a virtue that vari- 
ational methods yield better energies than wave functions. 
When very accurate energies are sought using basis-set 
methods, such as configuration interaction (CI), however, 
this advantage is diminished due to difficulty in describing 
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the electron4ectron cusp behavior and the curvature of 
the wave function near the nodes. 

Nodal considerations are of immediate practical im- 
portance when quantum Monte Carlo (QMC) is used to 
solve the Schrddinger equation.5 In QMC, the exact 
ground state of the time-independent Schriidinger equa- 
tion, Q+,(R), can be projected out from any initial distri- 
bution Y (R,O) not orthogonal to Qo(R) using the time- 
evolution operator written in imaginary time: 

exp(-tfi)I~(R,O))‘im~mIY(R,m))=Qo(R). (1) 

The time-dependent Schriidinger equation transformed to 
imaginary time may be viewed as a classical diffusion equa- 
tion, along with a birth/death process that mimics a reac- 
tion exhibiting first-order kinetics: 

a*(W) --= ( -DV2+ ~)Y(RJ)~~~?~ at 
This interpretation requires the wave function, rather than 
its square, to be considered a probability density. While 
this presents no difficulties in the symmetric (boson) 
ground state, excited-state wave functions (including the 
fermion ground-state wave function) change sign as nodes 
are crossed and the classical analogy breaks down. 

In some cases, QMC simulations employ the technique 
of importance sampling,6 whereby a trial wave function 
Yr( R) is used to bias the random walk so as to sample 
from a different probability distribution f( RJ), where 

limt- 02 
f(R,t) = Yr(R)Y(R,co) =Y,(R)%(R). (3) 

Here so(R) refers to the boson ground state. For the dif- 
fusion analogy to hold in this case, it is necessary that 
f(R,t) rather than Y (R,t) remain positive definite. One 
way to project out the fermion ground state (or any other 
excited state) is to employ the fixed-node approximation,’ 
in which the nodes of Y=(R) are imposed as a boundary 
condition upon the evolving solution Y (RJ). This bound- 
ary condition ensures that f(R,t) is positive definite since 
Y r( R) and Y ( RJ) will have the same sign for all R. If the 
nodes of Y r coincide with those of the exact wave function 
<PO, the fixed-node QMC energy will be exactly Ee (i.e., 
there would be no inaccuracy). The extent to which Y r 
differs from a0 elsewhere determines the statistical vari- 
ance of Eo. For this reason, one may wish to optimize the 
nodal surfaces without significantly altering Y r elsewhere.7 

In short, the most straightforward way to assess the 
quality of the nodal surfaces of Yr is to compare the fixed- 
node QMC energy (EFN) with E,,. This is usually an ex- 
pensive undertaking since the statistical error associated 
with EFN must be reduced to a very small value to enable 
a meaningful assessment of differences between EFN and 
Ec. Furthermore, with the exception of very small systems, 
Es is not accurately known. If the nodes of Y, are suffi- 
ciently close to those of the exact wave function a,, per- 
turbative methods such as the released node method’ can 
be applied to obtain the exact result. However, these meth- 
ods are extremely costly and inherently unstable. Varia- 
tional calculations only guarantee lower energies as more 

flexibility is introduced by successively increasing the size 
of the basis set or number of interacting configurations in 
the trial wave function. However, the quality of the nodes 
is not guaranteed to improve monotonically in this fashion. 
Although random statistical error can be made arbitrarily 
small by large-scale sampling, the systematic error caused 
by the fixed-node approximation will remain. It is therefore 
a challenge to seek other properties that are indicative of 
the overall quality of the nodal surfaces. Rather than look 
at other indirect indicators, such as multipole moments or 
polarizabilities, we have instead chosen to study the prop- 
erties of the nodal surfaces directly. We note here that not 
all QMC methods impose the fixed-node approximation. 
Recently methods have been proposed to impose antisym- 
metry directly upon the QMC solution to obtain the exact 
energy without the need for exact nodes.9a-9c Although 
these methods hold much promise for transcending the 
fixed-node approximation in the ground state, they are 
presently limited in scope. 

Despite the considerable mathematical literature de- 
voted to the formal properties of the nodes of L2 solutions 
to the Schrodinger equation,” no analytical representa- 
tions are available for these nodal surfaces. An exhaustive 
numerical mapping of the nodal hypersurfaces is a prohib- 
itively expensive undertaking for even the smallest systems, 
and would yield a bewildering array of numbers lacking in 
direct significance. Here we instead examine the topologi- 
cal and geometric properties of the nodal hypervolumes 
enclosed by these surfaces. Furthermore, our approach en- 
ables us to study structural elements in the domain of the 
wave function that are not necessarily delimited by nodal 
surfaces. Our long-range goal is to understand the relation- 
ship between antisymmetry nodes and excitation (orthog- 
onality) nodes that coexist in fermion excited states (e.g., 
excited electronic states of atoms or molecules). Therefore, 
we begin by examining the properties of antisymmetry 
nodes alone, which are the only nodes present in fermion 
ground states. Indeed, the manifold of fermion states and 
boson states differs only by the presence of antisymmetry 
node(s) in the fermion states. 

In this paper, we present a simple method to explore 
nodal topology and subsequently apply it to ground-state 
Hartree-Fock wave functions of some first-row atoms. The 
next section contains background information on the nodes 
of N-body wave functions. In Sec. III, we introduce an 
extension to Ceperley’s methodology of mapping nodal re- 
gions with a random walk. In Sec. IV, we report the results 
of the application of our approach to HF wave functions of 
Li-C. 

II. GENERAL NODAL PROPERTIES 

The full nodal hypersurfaces of a continuous spatial 
function of 3N coordinates are of dimension 3N- 1, divid- 
ing 3N dimensional configuration space of the N electrons 
into nodal regions of opposite sign. Each of the 3N coor- 
dinates corresponds to a degree of freedom (e.g., x, y, z) of 
a particular electron. Klein and Pickett” have pointed out 
that symmetry requirements only determine a 3N-3 di- 
mensional subsurface or hyperpoint where two electrons 
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FIG. 1. Example of a random walker in (a) two-dimensional configura- 
tion space representing (b) two electrons in one-dimensional physical 
space. Relection through the antisymmetry (exchange) node depicted in 
(a) corresponds to a permutation of the two electrons depicted in (b). 

are coincident. In one dimension, two electrons can ex- 
change only by passing through each other (see Fig. 1 >, 
but in higher dimensions this is not necessary. Since a 
permutation of the coordinates of two electrons must result 
in the wave function changing sign, every exchange path- 
way will entail a nodal crossing. These additional nodal 
points (beyond those lying within the hyperpoint ) describe 
the remainder of the 3N-1 hypersurface. According to 
Caffarel and Claverie,‘28*12b the full nodal hypersurface 
thus consists of the symmetry subsurface (3N- 3 dimen- 
sional), which is independent of the wave function and 
known exactly, and the peculiar nodal hypersurface (3N 
- 1 dimensional), which will in general not be given by 
any symmetries (except for very simple systems such as the 
1 3S state of He). This is shown in Fig. 2. The additional 
information required for the complete specification of the 
nodal hypersurfaces is only available a posteriori from the 
solution of the Schrodinger equation and is defined by both 
the form of the potential and the antisymmetry constraint. 

In order to discuss symmetry properties of wave func- 
tions it is useful to appeal to the full molecular Hamil- 
tonian group GfUll, l3 

Grull= Gr 8 K( spatial) o SF) o GcCNP) o E (4) 

which is given as the direct product of the translational 
(%I, rotational [K (spatial)], electron permutation 
(Sp’ ), nuclear permutation ( GcCNP’), and inversion 
groups (E). The elements of these groups commute with 
the molecular Hamiltonian and provide true symmetry la- 
bels for the corresponding eigenfunctions. The symmetry 
elements of the molecular point group do not commute 
with the complete molecular Hamiltonian but only with 
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Nodal Hypersurface 

9202 Glauser et al.: Nodal regions of N-body wave functions 

i 

Negative 
Nodal 
Region 

3N - 3 Symmetry 
Subsurface 

FIG. 2. Representation of symmetry vs peculiar nodal hypersurfaces. 

the vibronic Hamiltonian. For fermions, we are particu- 
larly interested in the antisymmetric irreducible represen- 
tation of the electron permutation group Sf) which has 
character ( + 1) under all even permutations and character 
( - 1) under all odd permutat@s. 

The permutation operator P permutes both spatial (R) 
and spin (8) coordinates of a given pair of electrons, 

h(~,Z)=(-i)~Vir(~,2), (5) 

and yields N! permutations, where N is the number of 
electrons. A Slater determinant is a function of 3N spatial 
coordinates and N spin coordinates and does not possess 
spatial nodes per se. In this 4N dimensional domain, the 
4N- 1 dimensional nodal hypersurfaces defy simple inter- 
pretation. By fixing the spin coordinates, however, we may 
examine the spatial nodes directly. For any given total 
electronic spin, the particular spin configuration adopted is 
not important here since different configurations merely 
correspond to a relabeling of the electrons. In QMC, this 
prescription is used to sample the energy and any other 
spin-independent quantity. In this paper, we shall use the 
familiar Coulombic Hamiltonian throughout; no magnetic 
interactions are available to flip spins. In this case, a-spin 
electrons no longer permute with &spin electrons and the 
full Slater determinant factors into a-spin and P-spin de- 
terminants thus reducing the number of allowed permuta- 
tions from (N,+NB)! to N,!N@!. 

We define a nodal region as a set of all points in a 
region of 3N space that can be interconnected without 
crossing a node (this is a nodal cell by Ceperley’s defini- 
tion4). Each nodal region is constructed from one or more 
permutational cells which, in a sense, are the fundamental 
building blocks for the 3N space of fermion wave functions 
(see Fig. 3). Ceperley has proven that a tilting property 
exists for ground-state fermion systems: there is only one 
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FIG. 3. Relationship between nodal regions and permutational cells. 

unique permutational cell insofar as all other cells are just 
mirror-image permutational reflections of any given cell. 
Note that this statement provides an implicit definition of 
permutational cells. For fully polarized free-particle sys- 
tems (i.e., completely spin-aligned systems), there is only 
one positive and one negative nodal region (i.e., all cells 
within a positive region are interconnected, and all cells 
within a negative region are interconnected). We wish to 
determine whether this result also holds for bound-state 
Hartree-Fock wave functions. No a priori prescription ex- 
ists for partitioning nodal regions into permutational cells. 
Since neighboring cells of the same sign may cohabit a 
contiguous volume, there may not exist explicit boundaries 
between them. Permutational cells can only be explicitly 
defined by construction; selecting an arbitrary point to- 
gether with all related permutational images adds one 
point to each permutational cell. 

3~(1,2)=~*(1)1c12(2)--~(2)~2(1), (6) 

where $i(j) is an atomic spin orbital. If one of the elec- 
trons is on a node of one of the spin orbitals, the wave 
function is not required to vanish since in an antisymme- 
trized wave function another term in the determinantal 
expansion will exist where that electron is in a different 
spin orbital. \u( 1,2) in Eq. (6) will be required to vanish 
only when the two terms are equal. If the N-body wave 
function is expressed only as a simple product of one- 
particle states (i.e., no antisymmetrization or symmetriza- 
tion), the nodes of Y ( 1,2) would correspond to and be 
exclusively determined by those of r,+ ( 1) and ti2(2) indi- 
vidually. We note that N-body antisymmetry nodes would 
be present even if all the occupied orbitals were nodeless 
(e.g., spin orbitals that result from a relativistic treat- 
ment ), except for the ground states of two-electron systems 
where spatial antisymmetry is necessarily absent. 

It is possible to study the nodal properties of ground 
states for systems of arbitrary size only because of the per- 
mutational symmetry expected. The number of permuta- 
tional cells increases factorially with the number of elec- 
trons. In the case of a closed-shell system with 20 electrons, 
for example, it would require insuperable computation 
time to map the lO!lO! permutational cells that are present 
in the ground state. By restricting our attention to the 
properties of a singZe permutational cell, which also de- 
scribes the properties of every other cell, it becomes possi- 
ble to subject systems possessing any number of electrons 
to this method of inquiry. Insofar as antisymmetry pro- 
vides only 3N-3 hyperpoints, the choice of M equivalent 
permutational cells is not unique; different wave functions 
will, in general, yield a diJ2rent set of equivalent permu- 
tational cells. In HF-based treatments, the potential ap- 
pearing in the Fock operator is specified by the wave func- 
tion itself. Because the 3N- 1 peculiar hypersurface is 
specified by the potential, it follows that it is also specified 
by the wave function. 

Antisymmetry is inherently a many-body phenome- 
non. One-body wave functions such as atomic orbitals pos- 
sess only excitation nodes. Ceperley has pointed out that 
the nodes of an N-body wave function have little to do with 
those of the corresponding orbitals.4 This can be readily 
illustrated for the first triplet state of He, where we may 

write a general self-consistent-field (SCF) wave function in 
the form 

In the case of 3S states of He, the wave function can be 
expressed exactly as a function of the electron-nuclear dis- 
tances rl and r,, and the interelectronic distance r12. Since 
the wave function must be antisymmetric with respect to 
exchange of electrons 1 and 2, and r12=r21, then 
Y(rl,r2,r12)=-Y(r2,r~,r21). If r1=r2, then Y=O. This 
constitutes one of the few cases where symmetry consider- 
ations provide the 3N- 1 dimensional peculiar hypersur- 
face a priori. In contrast, the nodal surfaces of the 2s 
atomic orbitals are given by r=const. 

III. COMPUTATIONAL METHODS 

A. General 

The basic strategy we adopt is to conduct random 
walks within the various permutational cells that lie within 
the various nodal regions in order to sample the spatial 
properties of these structural domains. This contrasts 
markedly with traditional QMC simulations where the 
walkers locally sample physical properties such as the en- 
ergy or dipole moment. Each random walker in 3N- 
dimensional space represents a particular configuration of 
electrons in an atom in three-dimensional space. An en- 
semble of random walkers is merely a set of different pos- 
sible configurations of the electrons in a given atom. Unless 
otherwise stated, the walks are purely diffusive (i.e., unbi- 
ased random walks). The sampling walks are generally 
preceded by an equilibration walk that is designed to ho- 
mogeneously distribute the walkers within a given nodal 
region or cell. This is accomplished by maintaining a run- 
ning average of the nearest-neighbor separation between 
random walkers, which is stored in a circular buffer. Equil- 
ibration is signaled by the occurrence of random deviations 
from the running average over a prescribed length of the 
walk. Our study consists of four parts: (i) Mapping the 
nodal topology for Li-C; (ii) comparison of all permuta- 
tional cells of a given atomic wave function (Be) to see if 
they are geometrically equivalent; (iii) comparison of geo- 
metric properties of a single permutational cell for a group 
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of first-row atoms; (iv) characterization of topological bot- 
tlenecks separating different cells having the same sign. In 
all four phases, we investigate the effect of using different 
basis sets in our trial wave functions. 

We initially employed four different basis sets. The first 
two were taken from the literature and consisted of Clem- 
enti and Roetti’s’4 double-c and near HF limit quadruple-c 
Slater-type orbital (STO) basis sets. The latter two were 
calculated using the HONDO package of computer codes” 
using a double-c Gaussian-type orbital (GTO) basis set 
(Dunning’s double-c contraction16 of Huzinaga’s (9~5~) 
setI of primitive Gaussian functions) at the restricted 
(RHF) and unrestricted (UHF) levels of theory. Compar- 
ison of results with these four Y r’s for Li showed many 
similarities in the geometric or topological properties. 
However, the average electron-nuclear distance exhibited 
by the double-c ST0 wave function are significantly 
smaller than the other three trial wave functions studied. 
For this reason, we employed only the ST0 quadruple-c 
basis set for the remainder of the study. We did not use 
explicit positive correlation functions (e.g., Jastrow func- 
tions) in the trial wave functions, which are commonly 
used in QMC, since being everywhere positive they do not 
affect the placement of the nodal surfaces. 

/ 
Positive 
Nodal Reglon 

Nodal Region 

(b) 

6. Nodal region and cell count 

We employed a cluster analysis as outlined by Ceper- 
ley4 to count the number of nodal regions in the domain of 
a given wave function. All permutational cells within all 
nodal regions are initially populated using either of the 
following methods: generate all permutational copies of a 
series of arbitrarily chosen points or perform a guided ran- 
dom walk, where walkers are permitted to cross nodal 
boundaries. In the latter case, the walk proceeds until the 
walkers are distributed as Y$( R). After all distinct parts of 
configuration space have been populated, an unbiased ran- 
dom walk is conducted to fill homogeneously each permu- 
tational cell and region. Because nodal regions and cells 
may be unbound, we impose an artificial nodal boundary of 
1 Y 1 = 10m4. All pairs of walkers that have the same sign 
are then connected by a straight line (a 3N-dimensional 
vector originating at walker 1 and terminating at walker 2) 
that is divided into equally spaced intervals (ranging from 
10e3 to 10e6 bohr) at which the sign of the wave function 
is determined. If the sign has not changed anywhere along 
the line, we assign that pair of walkers to the same nodal 
region. This static phase of the analysis provides only an 
upper bound to the number of cells since it is possible for 
nodal crossings (an even number) to occur on a line con- 
necting a pair of walkers that reside in the same nodal 
region. This can occur when the region is not simply con- 
nected as depicted by the outer region of a 2s hydrogenlike 
atomic orbital shown in Fig. 4. We define a(R) as a func- 
tion which returns the label of the nodal region (or per- 
mutational cell depending upon the context) for a partic- 
ular position R in 3N space. Overcounting is eliminated in 
two successive steps. First we employ a tree-structure clus- 
tering algorithm,‘8 where if n(R,) =0(R3) and fI(R,) 
=fi(R,), then S1(R,) =n(R,) even when Ri and R, were 

(d 

FIG. 4. Illustration of clustering algorithm in nonconvex topologies. (a) 
Walkers A and B are assigned to different nodal regions (not clustered); 
(b) walkers A and B are clustered via walker C into the same nodal 
region; (c) diffuse-and-cluster technique in which walkers A and B are 
clustered after diffusion to a new set of positions. 

not previously equivalenced [see Fig. 4(b)]. Second, the 
walkers diffuse randomly within the confines of the nodal 
regions whereupon the clustering analysis is reinitiated for 
those walkers of like sign that have not yet been equiva- 
lenced [see Fig. 4(c)]. This corresponds to the use of 
curved paths in Ceperley’s algorithm.4 This diffuse-and- 
cluster routine proceeds until the number of regions re- 
turned remains constant after a prescribed number of iter- 
ations. Prior to this dynamical clustering analysis, the 
walkers are reequilibrated to fill each nodal volume homo- 
geneously rather than according to Y$( R). 

C. Topology of permutational ceils 

All pairs of permutational cells that have opposite sign 
are tested to determine if they share a common boundary. 
To populate each permutational cell, it is only necessary to 
create N,!fVB! permutational copies of any point in 3iV 
space. If this is repeated for M points, there will be M 
walkers populating each cell. Unfortunately, when there 
are more walkers than permutational cells, it may not, in 
general, be possible to determine whether two walkers 
(having the same sign) belong to the same permutational 
cell. This arises in part because permutational cells are not 
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FIG. 5. Possible topology for a highly convoluted nodal region containing 
several permutational cells. We have depicted a line connecting two walk- 
ers in different permutational cells within a given nodal region. 

delimited by nodal surfaces. Whereas, walkers may be clus- 
tered into nodal regions by the line walking algorithm (see 
the aforementioned), they cannot be clustered into permu- 
tational cells in this manner. This ambiguity may be re- 
moved by using only one set of permutational copies such 
that each walker defines (and is representative of) a given 
permutational cell. 

In the high-dimensional space of the wave function 
domain, we must allow for the possibility of highly convo- 
luted permutational cell topologies as illustrated in Fig. 5. 
For this reason, we conduct a static analysis (i.e., walkers 
do not diffuse) to count the number of intervening nodes 
between permutational cells of both like and opposite sign. 
First, all pairs of representative walkers are connected by a 
straight line. Along each line, the sign of the wave function 
is determined at equally spaced intervals ranging from 
10d3 to 10m6 bohr. The number of nodal crossings is given 
by the number of times the wave function changes sign. We 
repeat this analysis using a different set of permutational 
image walkers where 1 Y 1 is changed. If the sign of Y, 
changes only once for any line connecting pairs of walkers 
between two cells (only one nodal crossing), the permuta- 
tional cells are connected. This analysis is repeated, suc- 
cessively halving the length of the line intervals at each 
iteration, to ensure that intermediate nodal regions have 
not been overlooked (Le., a negative region sandwiched 
between two positive regions). We find that the appropri- 
ate stride will vary depending upon the magnitude of ( Y 1 
for the pair of walkers being connected. As an adjunct to 
this procedure, we also minimize I Y I along the line con- 
necting pairs of walkers. This ensures that nodal crossings 
are not overlooked and also provides an indication of the 
degree to which two permutational cells are coupled (i.e., 
connected by regions of high or low probability). 

The determination of whether a given nodal region or 
permutational cell is finite (bounded volume) or infinite 
(unbounded volume) in extent does not actually require 
that the volume of a given cell is computable. Indeed it is 
not possible to do so strictly within a Monte Carlo frame- 
work when there are two or more positive (negative) cells. 
We instead exploit the relationship between average near- 
est neighbor separation (p) and concentration (c) in a 
random fluid, which is given by I9 

+4TN&- 1/3N , (7) 

where N is Avogadro’s number and D is the diffusion con- 
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stant. Since the number of walkers in a cell is known, we 
can solve for the volume of a given cell in terms of i5 

VaTN. (8) 

This expression was originally derived for a bulk liquid 
without boundaries so we cannot insist on an exact corre- 
spondence to the present case where the nodal surfaces can 
exhibit arbitrary topologies. We therefore employ Eq. (8) 
in a qualitative fashion only as a guide to the intuitive 
reasoning that follows. 

We assume that the hypervolume ofconJguration space 
enclosed by a given range of 1 Y I ) cutoff increases expo- 
nentially with decreasing values of the cutoff for an un- 
bounded cell or region. We start by imposing an artificial 
boundary to each permutational cell as defined by the min- 
imum absolute value that the wave function can adopt. By 
successively halving this cutoff value, two types of behavior 
can be discerned: the change in effective volume will in- 
crease monotonically for unbounded cells, but will eventu- 
ally taper off and go to zero for bounded cells. For each 
cutoff value, the ensemble of walkers within each cell is 
equilibrated prior to determining the average nearest- 
neighbor separations upon which volume estimates are 
based. Equilibrium has been attained when deviations from 
a running average of p occur randomly over a sufficiently 
long interval of walk time (see the aforementioned). 

D. Geometric properties 

During the random walk within a chosen permuta- 
tional cell or entire nodal region, various geometric prop- 
erties are sampled such as the average walker hyperradius, 
average radius for each electron, volume/surface ratio, av- 
erage probability amplitudes and densities, and the center 
of gravity and second spatial moments of the distribution 
of random walkers. We shall use the phrase electron radius 
to refer to the electron-nuclear distance in three- 
dimensional physical space. The hyperradius J&.,(R) of a 
walker located at point R in 3N space is defined in terms of 
the radii of the individual electrons ri as 

, n&c \ l/2 

&AR)=( i;l 6) . 
The origin of the coordinate system in 3N space (termed 
hyperorigin) is the point (O,O,O,...,O,O,O), which physically 
corresponds to all N electrons located at the nucleus (for 
atoms) or the center of mass (for molecules). The mo- 
ments do not refer to mass or charge distributions but 
rather to the distribution of the homogeneous nodal vol- 
ume itself with respect to the various axes that define the 
3N-dimensional configuration space. Indeed, all of the 
aforementioned properties (X) represent spatially homo- 
geneous averages 

(loa) 
rather than averages taken with respect to Y;(R), i.e., 

W# Jv dR Y;(R)X 
IS 

dR Y;(R). (lob) 
V 
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We must therefore caution against a literal interpretation 
of the values of the average electronic radii. It should be 
noted, however, that the relative values of the electronic 
radii are in qualitative agreement with those obtained using 
importance sampling. Because individual cells tend to be 
unbounded (see the following) artificial boundaries [as de- 
fined by a minimum value for 1 \I’( R) I] must be imposed 
for the random walkers. Otherwise, the electronic radii, 
walker hyperradii, and second moments would be infinite, 
and the volume/surface ratio would be ill defined. Further- 
more, an infinite volume is not amenable to Monte Carlo 
sampling unless importance sampling is used. Intuitively, 
the volume/surface ratio of an artificially bounded permu- 
tational cell should somehow be related to the fraction of 
random walkers that attempt to cross the nodal surface 
during a single move. This presupposes that the random 
walkers are homogeneously distributed within the bulk 
volume of the permutational cell. Since nodal surfaces 
serve as reflecting barriers in these simulations, the rele- 
vant quantity is the acceptance fraction of the ensemble 
taken as an average over the course of many moves. Quan- 
titatively, the volume/surface ratio is given by 

v/s= (2Df) 1’2 
LL2kJ’ 

(11) 

where the first factor is the average distance traveled dur- 
ing a step size oft, and the second factor is the acceptance 
ratio. 

E. Intercell diffusion analysis 
We initially populate only a single cell within either a 

positive or negative region. To assess the extent of diffusion 
between individual permutational cells of the same sign, we 
exploit our finding (see below) that the average radius of a 
given electron about the origin (i.e., the nucleus) may vary 
from cell to cell. As the walk proceeds, a running average 
is kept of the radius of each electron. At equilibrium [i.e., 
walkers have sampled configuration space according to 
$.(R)], all electrons should have the same average radii. 
We measure the extent of equilibration at a given walk 
time by the dimensionless quantity c(t) which is defined as 

C(t) =$ ,i ‘“i’;,;“’ 1 , 
r-1 (12) 

where xi(t) denotes the running average radius of electron 
i at time t, X(t) represents the average of the xi(t) at time 
t, and N is the number of electrons per walker. Because 
c(t) depends only upon the relative values of the electron 
radii, it may be used to compare the equilibration rates that 
were calculated using different wave functions, walking al- 
gorithms, or type of atom. The unbiased random walk 
length is on the order of 3200 hartree-‘, where c(t) is 
evaluated every 80 hat-tree-‘. Because of the much greater 
computational burden when gradients are computed, the 
importance-sampled random walk length was 400 har- 
tree-‘. We repeat this procedure at a series of boundary 
cutoff values and propagate the walk using either an unbi- 
ased random walk or an importance-sampled random 
walk. 

IV. RESULTS AND DISCUSSION 

A. Topology 

The most striking general result to emerge from the 
topological analysis was that although the number of al- 
lowed nodal regions ranges from a minimum of 2 to a 
maximum of N,!N,!, the ground electronic states for Be-C 
exhibited four distinct nodal regions: two positive and two 
negative. Li is a special case in that it is constrained to have 
only two nodal regions. These two regions for Li were 
found to be equivalent with respect to all geometrical prop- 
erties as illustrated in Table I. All four trial wave functions 
demonstrated agreement on this point. The four nodal re- 
gions for Be-C were found to be equivalent and this is 
depicted for Be in Table II. Although the number of nodal 
regions given by the static phase of the clustering analysis 
could be large, the count always converged down to four 
during the dynamic (diffuse-and-cluster) phase. This re- 
sult is important because a single nodal surface (and hence 
two nodal regions) orthogonalizes the fermion ground 
state to the boson ground state, which is nodeless. 

The presence of four nodal regions can be rationalized 
in a straightforward way. To study the spatial properties of 
the wave function, it is necessary to fix the spin coordinates 
of the electrons. Previously we factored the HF wave func- 
tion into a product of a-spin and P-spin determinants: 

\I, =deta( l,... N,)deta(Na+ l,... N,+No). (13) 

The a and /3 determinants are independent since they de- 
pend upon an entirely different set of coordinates. Because 
\I! must vanish when either determinant vanishes, there 
should exist one nodal hypersurface that is associated with 
the nodes of the a determinant for any coordinates of the 
&spin electrons and another hypersurface that is associ- 
ated with the nodes of the /3 determinant for any coordi- 
nates of the a-spin electrons. This implies that for Be and 
beyond, SCF wave functions should nominally exhibit at 
least two nodal hypersurfaces that divide configuration 
space into four nodal regions. These two nodal surfaces are 
depicted in Fig. 6. One surface corresponds to an exchange 
pathway for a electrons, while the second surface corre- 
sponds to an exchange pathway for fi electrons. At the 
3N-2 dimensional intersection region, ‘JJ( R) =0 and 
VY (R) =O. Ceperley has also shown that saddle points 
may be found on this seam.4 To test this notion of two 
independent nodal surfaces, we investigated the behavior of 
the a and p determinants separately for Li-C. In all cases, 
there were only two nodal regions found (one positive and 
one negative), which is consistent with the existence of a 
single a (P)-exchange nodal hypersurface for systems of 
a(p) electrons only. Ceperley had found this same result 
for free-particle systems all of the same spin.4 

We note that at the HF level, the full 3N- 1 nodal 
hypersurface for Be is known: rl =r, and r,=r,, where 1 
and 2 are a electrons and 3 and 4 are fi electrons. When 
instantaneous Coulomb correlation between electrons is 
taken into account via a CI treatment, the resulting wave 
function can no longer be separated into a and /3 compo- 
nents. Such wave functions differ from the HF wave func- 
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TABLE I. Basis-set dependence of nodal properties for Li. 

Property 
RHF RHF RHF UHF 

STO-DZ STO-QZ GTO-DZ GTO-DZ 

Volhurf ratio’ 0.075 0.075 0.080 0.080 0.080 0.080 0.080 0.080 
Y (ave.) 3.59E-4 -3.586-4 3.09E-4 -3.09E-4 3.1OE-4 -3.llE-4 3.1 IE-4 3.11E-4 
Yz (ave.) 3.01E-6 3.1OE-6 8.80E-7 8.17E-7 9.0lE-I 8.95E-7 8.86E-7 9.05E-7 

Hyperradius 4.38 4.39 6.41 6.43 6.35 6.35 6.35 6.35 

Ave. elec radii’ 
6.10 
1.14 
1.17 

1.14 6.01 1.14 6.02 
6.02 1.14 6.01 1.14 
1.18 1.18 1.18 1.18 

1st 0.96 3.95 1.14 
2nd 3.93 0.95 6.08 
3rd 1.16 1.16 1.18 

Second momentsb 
14.35 
14.43 
14.35 
0.52 
0.52 
0.52 
0.56 
0.56 
0.56 

Xl 
Xl 
x3 

x4 

X5 
x6 

X7 
X8 
xp 

0.00 
-0.01 
-0.02 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

-0.01 
-0.01 

0.03 
0.00 
0.00 
OX0 

0.00 
0.00 
0.00 
0.01 

-0.02 
-0.01 

0.00 
0.00 
0.00 

-0.02 
0.01 

-0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

-0.02 
0.01 

-0.03 
0.00 
0.00 
0.00 

-0.03 
0.00 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.37 6.35 0.52 
0.37 6.35 0.52 
0.37 6.32 0.52 
6.26 0.37 14.21 
6.32 0.37 14.32 
6.29 0.36 14.30 
0.57 0.57 0.56 
0.57 0.57 0.56 
0.57 0.57 0.56 

0.52 13.88 0.52 13.90 
0.52 13.90 0.52 13.87 
0.52 13.83 0.52 13.93 

13.91 0.52 13.99 0.52 
13.87 0.52 13.91 0.52 
13.87 0.52 13.75 0.52 
0.56 0.56 0.56 0.56 
0.56 0.56 0.56 0.56 
0.56 0.56 0.56 0.56 

‘In units of bohr. 
bin units of boh2. 

tion in Eq. (13) in that there will be a sum of products 
rather than a single product of determinants. The two 
nodal surfaces will no longer be independent, and we can- 
not rule out that at the CI level the intersection seam of the 
nodal hypersurfaces will become a finite-valued bottleneck 
(saddle-point) that provides a passageway between the two 
parts of what is now one contiguous positive (negative) 
nodal region. This scenario is depicted in Fig. 7. 

For all atoms studied, all nodal regions were deter- 
mined to be unbounded. Since all nodal regions in the 
ground state are geometrically identical, and at least one 
region must be unbounded, then all permutational cells 
must be unbounded for ground-state wave functions. For 
excited-state wave functions, where nodal regions will no 
longer be constrained to be identical, bounded nodal re- 
gions may arise. The connectivity patterns between nodal 
regions seem rather trivial insofar as there are only four 
regions in the ground state; two positive regions that are 
separated by two negative regions as depicted in Fig. 6. In 
contrast, the connectivity patterns between permutational 
cells are as yet undefined and provide a fertile ground for 
exploration. 

Permutational (exchange) symmetry requires that 
each nodal region contain N,!NB!/Nresi,, permutational 
cells, where Nresion gives the number of nodal regions. Li 
and Be are special cases insofar as they are the only sys- 

terns wherein a permutational cell is also a nodal region. 
For B and larger systems, a nodal region will generally 
contain more than one permutational cell. Our results in- 
dicate that not all positive permutational cells are intercon- 
nected in the same manner. For B, all positive (negative) 
permutational cells are related to each other by a double 
permutation of electronic coordinates. There are two pos- 
sibilities: a single a followed by a single p permutation or a 
double a permutation. Since B has only two 0 electrons in 
the ground state, a double fl permutation returns the start- 
ing configuration. Line minimizations conducted between 
pairs of walkers of like sign demonstrated that two cells 
related by two a-a permutations are connected by regions 
of high probability, whereas two cells related by a-a, 0-P 
permutations encounter a nodal surface along their con- 
necting lines. We interpret this to mean that those cells 
related by permuting only a electrons are clustered to- 
gether on one side of the topological bottleneck. In general, 
permutational cells of like sign may be related in two ar- 
chetypal ways: (i) via an even permutation of a electrons 
followed by an even permutation of 0 electrons or (ii) via 
an odd permutation of a electrons followed by an odd 
permutation of p electrons. Based upon the foregoing evi- 
dence, we conjecture that the following property holds for 
fermion systems in general: permutational cells related by 
permutation scheme (i) are clustered together in the same 
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TABLE II. Geometric properties of the four nodal cells in the wave function domain of Be. 

Nodal cell 

Property 

Vol./surface ratio” 
Y (ave.) 
Cl* (ave.) 

1 2 3 4 

0.008 (23) 0.010 (16) 0.008 (26) 0.008 (28) 
0.32E-2 (12) -0.35E-2 (9) -0.31E-2 (1) 0.30E-2 (2) 
O.l7E-4 (9) O.l8E-4 (7) O.l6E-4 (1) O.l5E-4 (1) 

Hyperradiu? 4.02 (5) 3.97 (7) 

Ave. electron radii’ 
2.62 (3) 
0.38 (0) 
0.38 (0) 
2.72 (8) 

Zeroth moments’ 
-0.05 (6) 
-0.15 (9) 

0.09 (8) 
0.00 (0) 
0.00 (0) 

-0.02 (1) 
0.01 (1) 
0.01 (1) 
0.01 (0) 

-0.02 (4) 
0.21 (11) 
0.3 1 (13) 

3.83 (5) 3.94 (2) 

2.48 (6) 
0.40 (1) 
2.78 (6) 
0.43 (2) 

0.12 (9) 
0.15 (10) 

-0.27 (8) 
-0.05 (2) 

0.02 (1) 
-0.01 (2) 

0.30 (15) 
-0.12 (17) 

0.18 (9) 
-0.02 (1) 
-0.09 (3) 

0.03 (2) 

2.30 (11) 
2.46 (19) 
2.32 (14) 
0.07 (0) 
0.06 (0) 
0.07 (1) 
3.05 (26) 
3.30 (W 
2.29 (12) 
0.05 (0) 
0.10 (2) 
0.07 (1) 

1st 0.36 (1) 
2nd 2.78 (6) 
3rd 0.42 (2) 
4th 2.60 (5) 

0.40 (1) 
2.51 (7) 
2.60 (2) 
0.45 (2) 

0.00 (1) 
0.00 (1) 
0.01 (1) 

-0.04 (9) 
0.17 (17) 

-0.47 (12) 
0.00 (1) 

-0.07 (3) 
-0.03 (1) 
-0.26 (10) 

0.04 (9) 
-0.02 (8) 

0.02 (1) 
0.06 (2) 

-0.03 (2) 
-0.18 (12) 

0.11 (5) 
-0.12 (6) 
-0.34 (14) 

0.17 (7) 
0.01 (5) 

-0.07 (2) 
-0.02 (1) 

0.09 (3) 

Xl 
x2 

x3 

x4 

X5 

x6 

Xl 

-% 

x9 

XI0 

XII 

x12 

Second momentsb 
2.38 (5) 
2.84 (14) 
2.55 (5) 
0.06 (0) 
0.06 (0) 
0.06 (0) 
0.06 (0) 
0.06 (0) 
0.06 (0) 
2.34 (9) 
3.05 (23) 
3.19 (38) 

0.05 KU 
0.05 (0) 
0.06 (0) 
2.48 (16) 
3.06 (29) 
3.36 (31) 
0.05 (0) 
0.10 (3) 
0.06 (0) 
2.72 (12) 
2.53 (20) 
2.47 (7) 

0.06 (0) 
0.07 (1) 
0.06 (0) 
2.98 (35) 
2.24 (13) 
2.19 (12) 
3.01 (21) 
2.31 (9) 
2.26 (16) 
0.08 (1) 
0.06 (0) 
0.11 (2) 

‘In units of bohr. 
bIn units of bohr.’ 

p oxchange 
hypemurk. 

a *xchang* 
hyperrutface 

FIG. 7. Avoided crossing of nodal hypersurfaces expected for correlated 
wave functions. Note that there is only one nodal region of each sign. In 
this illustration, we have depicted only the continuity within the positive 
nodal region. 

FIG. 6. Intersection of a and B nodal hypersurfaces dividing configura- 
tion space into four nodal regions. 
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TABLE III. Number of node crossings between permutational cells in the 
wave function domain of B as a function of 1 II. One walker per nodal 
cell; walkers are all permutational images of each other. 

IyIa 
Cell pair 10-l 10-2 10-4 10-s lo-” 10-I’ 

1-2 1 1 1 1 1 1 
1-3 1 1 3 1 3 1 
l-4 0 2 2 0 4 2 
l-5 1 1 1 1 1 3 
1-6 0 0 0 0 0 4 
1-7 0 2 2 2 2 2 
l-8 1 3 3 3 3 3 
1-9 0 2 2 2 2 2 
l-10 1 3 3 3 3 3 
l-11 1 1 1 3 1 1 
1-12 0 2 0 2 0 2 

‘Value of 1 Y I for all twelve walkers. 

nodal region, while those related by permutation scheme 
(ii) reside in different nodal regions. This conjecture will 
be tested in the intercell diffusion analysis (see the follow- 
ing) . 

Each permutational cell may be represented by a single 
walker. Each walker is a permutational reflection of all 
other walkers. The connections between the twelve permu- 
tational cells in B are shown in Table III in terms of the 
number of nodal crossings between their representative 
walkers. For the sake of clarity, we have only included a 
description of how a given permutational cell is connected 
to all others. These results nominally show that each pos- 
itive (negative) cell is directly connected to all the other 
positive (negative) cells within the same nodal region (i.e., 
a straight line can be drawn between any two walkers that 
are related by an even permutation of electron labels such 
that no nodal surfaces are crossed), and that each positive 
(negative) cell lies adjacent to all other negative (positive) 
cells (i.e., a straight line can be drawn between any two 
walkers that are related by an odd permutation of electron 
labels such that there is exactly one nodal surface cross- 
ing). However, when walkers and their sets of related per- 
mutational images are allowed to migrate to regions of low 
probability, the interconnections between image points re- 
veal a more complicated topology. In particular, the num- 
ber of nodal crossings between a given pair of walker im- 
ages tends to increase as 1 Y 1 decreases. For B, the 
maximum number of crossings is three for positive- 
negative connections and four for positive-positive or 
negative-negative connections. Such behavior is consistent 
with the notion that nodal hypersurfaces convolute to cre- 
ate nonconvex nodal regions as depicted in Fig. 8. This 
behavior is logical from the standpoint that the nodal con- 
volutions only affect walkers close to the nodes themselves. 

B. Equivalency of permutational cells 

The tiling theorem, which holds rigorously for exact 
wave functions,’ states that all N,!NB! cells should be iden- 
tical (except perhaps for a sign change). We studied the 
geometrical properties of the four permutational cells of 

p NodalRegion 

_ 
p .xcnmg. 

hyporrurface 
a .xcnang. 

hyporrurface 

FIG. 8. Curvature of nodal hypersurfaces inferred from the number of 
nodal crossings between permutational cells. 

Y,(Be) to ascertain whether the tiling property can be 
extended to bound state HF wave functions. The results 
displayed in Table II indicate that all four cells are indeed 
equivalent in virtually all respects (within the statistical 
uncertainties of the simulation). The lone discrepancy was 
that the average radius of the individual electrons (i.e., 
electron-nuclear distance) was found to differ from cell to 
cell. In cell 1, the average radii are 0.4, 2.8, 0.4, 2.6 bohr 
for the al, 02, &, and & electrons, respectively. In cell 2, 
the radii of electrons 1 and 2 have been permuted; in cell 3 
the radii of electrons 3 and 4 have been permuted; in cell 4 
the radii of both sets of electrons have been permuted. In a 
crude sense, this accords with the intuitive notion that per- 
mutational cells differ only by an even or odd permutation 
of the electron labels (see Fig. 9). The determinantal ex- 
pansion of the SCF wave function for Be is given as 

12a Permutational Cell 1 
tudll : 

21G Permutational Cell 2 

FIG. 9. The use of average electron radii about the nucleus to gauge the 
extent of intercell diffusion between the two positive permutational cells 
in the same nodal region in the wave-function domain of Be. Black dots 
denote random walkers in twelve-dimensional configuration space. Super- 
scripts denote p electrons. (a) Walkers sampling permutational cell 1 
yielding apparent orbital occupancy of ls( 1)2~(2) ls(3)2s(4). (b) Walk- 
ers sampling permutational cell 2 yielding an apparent orbital occupancy 
of ls(2)2s( l)ls(4)2~(3). (c) Walkers having sampled both permuta- 
tional cells equally yielding an indefinite orbital occupation. 
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TABLE IV. Nodal cell permutations for the wave function of B. 

Orbitals” Ref. conf. 
Positive nodal cells 

Double permutations 

IS a1 a2 a3 a2 a1 a3 

2s ff2 a3 aI aI a3 a2 

2P a3 a1 a2 

Is B, Bl Bl ii i: 2 

z 82 82 82 81 81 BI 

Negative nodal cells 
Single permutations Triple permutations 

IS a2 a3 a2 aI a3 a3 

2s a3 aI aI a3 a2 a2 

2P aI a2 a3 

ii Bl 8, 82 it ii 2 

z i32 I32 81 81 81 Bl 

Wverbars denote ~7 spin orbitals. 

Y( 1,2,3,4) = ls( 1)2~(2)1~(3)2~(4) 

- lS(2)2.s( 1) k(3)>(4) 

- ls( 1)2~(2)1~(4)2~(3) 

+ ls(2)W 1) ls(4)2.~(3), (14) 
where the superscripted bars denote spin orbitals occupied 
with electrons of p spin. The average radii of the four 
individual electrons within a given cell are clustered into 
two groups: two electrons “occupying” Is-type orbitals and 
the other two electrons “occupying” &-type orbitals. One 
anticipates that the effect of antisymmetrization is to 
scramble the orbital occupations such that a given electron 
has an equal probability of residing in any of the occupied 
one-particle states. However, the results in Table II pro- 
vide a clear indication that within a given permutational 
cell, a single term in the determinantal expansion seems to 
predominate. For example, the two positive cells corre- 
spond to regions of 3N space where either the first or 
fourth term dominates the expansion in Eq. ( 14). In con- 
trast, the nodal hypersurfaces of this antisymmetric func- 
tion correspond to regions of 3N space where the four 
terms collectively balance and no single term predomi- 
nates. In the case of the 3N-3 nodal hypersurface, which 
corresponds to electron coincidence, all four terms are 
identical. 

The indistinguishability of electrons must therefore be 
interpreted as a global property of the entire configuration 
space. We note that this property also holds for the positive 
half of configuration space (i.e., when both positive nodal 
regions are considered collectively) as well as the negative 
half. We illustrate this for B in Table IV where the twelve 
possible orbital occupation schemes for the five electrons 
are displayed. Every a (/3) electron is seen to have an equal 
probability of appearing in each of the Q(P) spinorbitals in 
either the positive half or negative half of configuration 
space separately. A similar geometrical analysis performed 
for Be lends credence to this idea. The results shown in 
Table V convincingly demonstrate that the orbital occu- 

TABLE V. Geometric properties of the pooled positive regions and 
pooled negative regions in the wave-function domain of Be. (Run param- 
eters, 8~ lo5 sample points; time step=0.05 hartree-‘.) 

Averages 

Property Positive regions Negative regions 

Vol./surface ratio’ 
Y (ave.) 
Y2 (ave.) 

Hyperradiu? 

1st 
2nd 
3rd 
4th 

Xl 

x2 

x3 

X4 

x5 

x6 

Xl 

x8 

x9 

Xl0 

XII 

Xl2 

0.050 COY 
5.21B-4 (0) 
7.8lE--7 (4) 
4.94 (0) 

Ave. electron radii* 
1.85 (11) 
1.99 (11) 
1.84 (11) 
1.99 (11) 

Zeroth moments’ 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.01 (1) 
0.00 (1) 
0.00 (1) 
0.00 (1) 
0.01 (1) 

Second momentsb 
2.08 (16) 
2.03 (16) 
2.03 (16) 
2.25 (16) 
2.24 (16) 
2.26 (16) 
2.04 (16) 
2.03 (16) 
2.05 (16) 
2.25 (16) 
2.25 (16) 
2.25 (16) 

0.050 (0) 
5.21B-4 (0) 
7.87E-6 (4) 
4.94 

1.97 
1.86 
1.87 
1.97 

0.01 
0.01 
0.01 
0.00 
0.00 
0.01 

-0.01 
-0.01 

0.00 
0.00 
0.00 
0.00 

2.22 
2.22 
2.22 
2.06 
2.06 
2.06 
2.08 
2.08 
2.07 
2.23 
2.25 
2.21 

(0) 

(11) 
(11) 
(11) 
(11) 

(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 

(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 
(17) 

‘In units of bohr. 
bin units of bobs. 
“Statistical error (1 standard deviation) listed in parentheses after each 
quantity. 

panties within each half of configuration space are com- 
pletely scrambled so as to render the electrons indistin- 
guishable. 

C. Permutational cell geometry for first-row atoms 

The geometrical properties of a singk permutational 
cell for each of the atoms Li-C are displayed in Table VI. 
Because nodal regions for these atomic wave functions are 
all unbounded (see preceding text), we have artificially 
delimited each region by a surface defined by 1 V, I= 5.0 
X lo-* rather than by the actual nodal surfaces. The cen- 
ters of gravity of the permutational cells for Li-C appear to 
be located at the hyperorigin. Intuitively, we may expect 
such a result because within each permutational cell the 
electrons appear to have a definite orbital assignment, and 
each orbital is centered about the origin in 3D space. How- 
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TABLE VI. Geometric properties of a single nodal cell in the wave function domains of Li-C (minimum value of I Y I =5x 10e2). 

Atom 

Property Li Be B C 

Vol./surface ratio’ 5.9 E-3 
Y (ave.) 1.2 E-l 
Yy2 (ave.) 1.5 E-2 
Hyperradius’ 2.52 

1st 
2nd 
3rd 
4th 
5th 
6th 

x1-x3 

X4-G 

X1-% 
x1o-xt2 

x13-x15 

xl6-xl8 

XI -x3 

X4-h 

x1-x9 
xIo-xIz 
x13--x15 

xl6-xl8 

2.50 
0.19 
0.19 

0.01, 0.00, -0.02 
0.00, 0.00, 0.00 
0.00, 0.00, 0.00 

2.25, 2.25, 2.26 
0.01, 0.01, 0.01 
0.01, 0.01, 0.01 

1.5 E-3 4.0 E-4 6.0 E-4 
1.1 E-l 6.7 E-2 7.2 E-2 
1.2 E-2 5.1 E-3 6.2 E-3 

2.04 2.31 2.29 

Ave. electron radii’ 
1.42 
0.07 
1.42 
0.07 

1.27 
1.22 
0.15 
0.16 
1.32 

0.58 
1.01 
0.94 
0.85 
0.15 
1.12 

Center of gravity 
0.03, 0.00, 0.05 
0.00, 0.00, 0.00 

-0.02, 0.00, 0.00 
0.00, 0.00, 0.00 

Second momentsb 
0.70, 0.71, 0.72 
0.00, 0.00, 0.00 
0.75, 0.69, 0.69 
0.00, 0.00, 0.00 

0.94, 0.03, 0.07 
-0.94, 0.03, 0.03 

0.00, -0.01, -0.01 
0.00, -0.02, 0.00 

-0.35, 0.16, -0.03 

1.10, 0.35, 0.32 
1.13, 0.29, 0.29 
0.03, 0.01, 0.01 
0.01, 0.01, 0.01 
0.65, 0.57, 0.68 

-0.04, -0.03, -0.04 
-0.36, 0.04, 0.07 
0.10, -0.25, 0.02 

0.17, 0.21, 0.00 
0.00, 0.00, 0.00 

0.19, -0.26, 0.09 

0.24, 0.34, 0.09 
0.60, 0.42, 0.25 
0.45, 0.42, 0.25 
0.41, 0.35, 0.22 
0.01, 0.01, 0.01 
0.44, 0.51, 0.41 

‘In units of bohr. 
bin units of bob?. 

ever, it does not necessarily follow that the N-body wave 
function in 3N space must possess the same symmetry 
properties as the constituent one-body, three-dimensional 
wave functions since the former is an antisymmetrized 
product of the latter. In general, the statistical error for the 
various quantities seems to grow larger as the size of the 
atom increases. The greatest relative uncertainty appears to 
be associated with the center of gravity of the spatial dis- 
tribution, which arises from the fact that it is the only 
quantity that is determined by averaging both positive and 
negative contributions. These errors are larger for those 
degrees of freedom associated with electrons that occupy 2s 
or 2p vs 1s orbitals. 

The volume/surface ratio monotonically decreases 
from Li-C. The centroid of the arbitrarily chosen permu- 
tational cells for Li and Be appears to be at the hyperori- 
gin. The average electronic radii within a given permuta- 
tional cell unambiguously indicate a well-defined orbital 
occupancy for Li-B. In the permutational cell for B, elec- 
trons 3 and 4 reside in core 1s orbitals, whereas electrons 
labeled 1, 2, and 5 reside in valence 2s or 2p orbitals. We 
may infer this behavior insofar as the average electronic 
radii within a chosen permutational cell cluster into two 
clearly distinguishable groups of vastly different radii. Yet 
within each group the radii are virtually identical. In the 
case of C, however, the electronic radii do not cluster as 
neatly. The two nominal core electrons (1 and 5) have 
vastly different radii (0.58 vs 0.15 bohr). The four valence 

electrons likewise exhibit a wide variation in their respec- 
tive radii (0.85-l. 12 bohr). We infer that the set of walkers 
that originally populated a single permutational cell in the 
domain of the wave function for C did not all remain with 
the confines of that original permutational cell (see the 
following). 

The second principal moments of the spatial distribu- 
tion indicate a nonspherical shape for the permutational 
cells of all four atomic wave functions. The shape appears 
to be ellipsoidal with the long and short axes correspond- 
ing to the degrees of freedom associated with the valence 
and core electrons, respectively. For a given atomic wave 
function, all N,!Nfl! permutational cells have the same ba- 
sic shape and center of gravity and differ only by a series of 
rotations. 

Perhaps the greatest source of error in the sampling of 
geometric properties of individual permutational cells is 
associated with random walkers hopping from one positive 
(negative) cell R(R,) into a different positive (negative) 
cell n(R,) during a given time step. This pathological 
behavior leads to errors in the calculated moments of the 
distribution and the average radii of the individual elec- 
trons. Although this behavior cannot be detected immedi- 
ately after it has occurred, it may be inferred indirectly 
over a period of many time steps subsequent to the actual 
event. One measurable difference between a walker from 
a( R, ) that has strayed into a( R2) from those that have 
remained confined in fi(R,) is in their average nearest- 
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neighbor distances to the other walkers in a( R,). For this 
reason, every 10 steps of the walk we sampled the deviation 
of each walker from a running average of the average 
nearest-neighbor separation. At the end of the walk, those 
walkers with a cumulative number of positive deviations 
greater than 3 standard deviations from the average 
(50%) were rejected and they did not contribute to the 
pooled estimate of the geometrical properties. 

Li and Be did not exhibit this hopping problem, 
whereas B and C very often did. We interpret this behavior 
as a measure of the density of permutational cells per nodal 
region in larger systems. This arises because the number of 
permutational cells increases factorially with the number 
of electrons, whereas the number of nodal regions remains 
constant. Li and Be possess only one permutational cell per 
nodal region and the two designations are synonymous in 
these cases. In contrast, B and C possess 3 and 12 permu- 
tational cells per region, respectively. Thus it appears that 
the effective density of permutational cells increases with 
the number of electrons causing larger atoms to exhibit an 
increased propensity for spurious hopping during the ran- 
dom walks. This hopping was diminished by both reducing 
the time step (allowing only smaller hops) and increasing 
the boundary cutoff value (increases the gap between ad- 
jacent cells of the same sign) such that the transition prob- 
ability was noticeably decreased. However, the use of small 
time steps leads to inefficient sampling that required much 
longer time for a walk to be performed. Furthermore, the 
use of restrictive boundaries allows only a small region of 
configuration space within a given cell to be sampled. Thus 
we were forced to use values that represented a compro- 
mise between minimizing spurious hopping and minimiz- 
ing inefficient sampling. 

D. Intercell diffusion analysis 

We have determined that each nodal region is com- 
prised of one or more contiguous permutational cells and 
further determined how they are connected; the two nodal 
hypersurfaces in the ground state appear to be corrugated 
in the sense that they pinch off to form geometrically dis- 
tinct sectors of configuration space that can be identified 
with the concept of permutational cells. From the stand- 
point of QMC simulations, it is tacitly assumed that ran- 
dom walkers have unrestricted mobility to explore all parts 
of configuration space in accordance with Y$( R). Indeed, 
this is implied by the ergodic hypothesis, which loosely 
states that the time average of one walker is equivalent to 
the ensemble average of a large collection of walkers. To 
test this idea, we measured the rate of intercell diffusion 
using either a biased or unbiased random walk, and the 
results are displayed in Figs. 10-14. 

We logically suppose that permutational cells in close 
communication should be connected by regions of rela- 
tively high probability, whereas cells that are less proxi- 
mate should be separated by regions of lower probability. 
For unbiased random walks, the presence of a dynamical 
bottleneck between positive (negative) cells can be inferred 
from the dependence of the rate of intercell diffusion on the 
magnitude of the boundaries for 1 Y I. In the case of Be 
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FIG. 10. Intercell diffusion analysis for Be using an unguided random 
walk as a function of imposed boundary cutoff. Circles, 1 Y 1 min= 10m3; 
squares, 1 Y 1 min= lo-‘; diamonds, 
= 10m9; solid square, 1 Y 1 min= 10-t’. 

1 Y I min= lo-‘; triangles, I Y 1 min 

(Fig. lo), it is apparent that even after a long walk of 3200 
hartree- ‘, very little equilibration has occurred for cutoffs 
ranging from 10-3-10-9. It is only when the walkers are 
given the added freedom to wander into regions where I VI I 
may be as small as lo-“, does equilibration occur. Thus 
we may infer that a significant bottleneck is present be- 
tween the two positive cells that inhibits intercell diffusion. 
This result is expected since for Be each permutational cell 
is its own nodal region, and thus the two positive cells are 
completely separated by intervening nodal surfaces. As 
shown in Fig. 6, for a positive walker to diffuse between the 
two positive cells, it is necessary to “hop” over a negative 
nodal region and thus cross two nodal surfaces. For rea- 
sonably short time steps, such hopping will only occur 
when walkers approach the nodal surfaces very closely. 

E 

z 
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5 0.6 

i 0.5 
t 

Guided (importance-sampled) walks for Be (Fig. 11) 
that allow diffusion between positive and negative nodal 
regions appear to be 70% equilibrated on the time scale of 
400 hartree. - ’ In contrast, guided walks confined to posi- 
tive regions only do not appear to have diffused outside of 

“.“l” 
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FIG. 11. Intercell diffusion analysis for Be using a guided random walk. 
Circles: walkers confined to the positive nodal regions. Squares: walkers 
permitted to cross into negative regions. 

J. Chem. Phys., Vol. 97, No. 12, 15 December 1992 



0.6 

0 400 800 1200 1600 
Walk Time (hartreed) 

FIG. 12. Intercell diffusion analysis for the a electrons of B using an FIG. 14. Intercell diffusion analysis for C using a guided random walk 
unguided random walk as a function of imposed boundary cutoff. with walkers confined to the positive nodal regions. Circles depict the 
%uar-s I * I mln =7.5X lo-‘; circles, 1’4 1 ,i”=5.OX lo-*; diamonds, equilibration extent of the four a electrons, and squares depict the equil- 
IY 1 =1.0x 10-Z. ibration extent of the two p electrons. 

the initially populated permutational cell as evidenced by a 
nearly constant value of c(t). It appears that diffusion be- 
tween positive cells occurs indirectly through the negative 
regions and vice versa. Thus, given suficient time, guided 
random walks should be capable of reliably populating 
configuration space in accordance with Y+(R) regardless 
of the initial distribution of walkers. In small systems, the 
number of walkers ( - 500) is greater than the number of 
permutational cells (e.g., Be-4, B-12, C-48) such that a 
random initial placement will populate virtually all cells. 

For the case of B, the situation is more interesting 
since there are now three permutational cells in a given 
nodal region. When we look at the extent of equilibration 
of the a and /? electrons separately for both the unguided 
(Fig. 12) and guided (Fig. 13) walks, we find that the a 
electrons have equilibrated (i.e., become indistinguishable 
in terms of orbital occupancy), whereas the fl electrons 
have not equilibrated at all (i.e., may be distinguished 

0.8 
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based upon orbital occupancy). This means that the per- 
mutational cells accessible to a group of walkers that began 
walking at the same point in configuration space differ with 
respect to the labeling of the a electrons but have the same 
/I electron labeling. We anticipate this behavior for B if all 
permutational cells in a given region are related by a dou- 
ble permutation of the a electrons. Stated slightly differ- 
ently, all three permutational cells in any of the four nodal 
regions of B have the same apparent orbital occupancy for 
the B electrons, hence intercell diffusion within a given 
nodal region does not render the p electrons indistinguish- 
able. The same behavior was noted for C and the results of 
a guided walk are shown in Fig. 14. 

“.” 

0 100 200 300 
Walk Time (hartreed) 

400 

The rather facile diffusion amongst permutational cells 
in a given nodal region for B undermines to some extent 
the distinctiveness and individuality of permutational cells. 
Indeed, as implied by Fig. 12, the concept of a permuta- 
tional cell as a distinct contiguous sector of configuration 
space ceases to have meaning for those volumes of config- 
uration space where 1 Y 1 < 10m2. A possible permutational 
cell topology to account for these results is depicted in Fig. 
15. Because all well-behaved wave functions are expected 
to possess at least one maximum per permutational cell, 
these cells may be considered basins of attraction for the 
N,!iVO! maxima.20 As a walker travels away from the max- 
imum of a given permutational cell towards the nodal sur- 
face, the apparent orbital occupancies of the electrons rep- 
resented by the diffusing walker become increasingly 
indeterminate. In a manner of speaking, this walker in- 
creasingly becomes a citizen of all permutational cells in 
that nodal region. Insofar as this was the only relevant 
feature that distinguished one permutational cell from an- 
other, for parts of configuration space near the nodes, the 
concept of permutational cells is less useful. 

FIG. 13. Intercell diffusion analysis for B using a guided random walk 
with walkers confined to the positive nodal regions. Circles depict the 
equilibration extent of the three a electrons, and squares depict the equil- 
ibration extent of the two p electrons. 

For first-row atoms, the permutations required for a 
walker to travel from one permutational cell to another 
interchange Is, 2s, and 2p orbital occupancies. Clearly, all 
electron permutations are not equally feasible, and the de- 
gree of feasibility is somehow related to the magnitude of 
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FIG. 15. Relationship between permutational cells in the same nodal 
region. Illustration represents a six-dimensional cross section through 3N 
configuration space. 

the corresponding exchange integrals. For example, long- 
range van der Waals interactions entail negligible exchange 
between electrons formally residing on the individual 
monomers. In this connection, we conjecture that infeasi- 
ble permutations correspond to permutational cells that 
are separated by some sort of bottleneck even if these cells 
reside in the same nodal region. As a corollary, the rate of 
intercell diffusion may be a qualitative indicator of the pro- 
pensity for electron exchange. Such a bottleneck may be a 
manifestation of either (i) a topological constriction 
caused by local curvature of the nodal hypersurfaces (pos- 
sibly the passageway has reduced dimensionality), or (ii) a 
passageway that is surrounded by regions where Y+(R) is 
uniformly small or (iii) a greater distance between the 
maxima of two permutational cells. 

An alternative way to think about bottlenecks between 
permutational cells of like sign is to express the wave func- 
tion in terms of its pseudopotential U(R) defined as 

U(R)=-lnlY(R)12. (15) 

U(R) can be considered a potential (not potential-energy) 
surface in the configuration space of the electrons, and is 
entirely analogous to the usual potential-energy surface in 
the configuration space of the nuclei. The usual notions of 
potential wells and barriers are applicable to the former 
case; maxima in Y(R) correspond to minima in U(R), 
and the flux bottleneck in Y(R) corresponds to a saddle 
point in U(R). Thus, the positive (negative) phase region 
consists of a series of symmetry equivalent local minima 
(one for each permutational cell in that region) that are 
separated from each other by a series of equivalent saddle 
points R,,. By searching U(R) for a stationary point with 
one negative eigenvalue of the second derivative matrix 
U”(R), it is possible to locate these bottlenecks precisely. 
It is tempting to extend the analogy we have drawn with 
nuclear potential-energy surfaces to include a transition- 
state theory treatment at R,, yielding pseudoenergies and 
pseudoentropies of activation. The latter would require the 

evaluation of the translational, rotational, and vibrational 
partition functions corresponding to the configuration of N 
electrons in three-dimensional space that collectively define 
Rp. Because U(R) becomes infinite at the nodes, and does 
not distinguish between positive and negative regions of 
Y(R), it would not be profitable to carry out random 
walks in accordance with U(R) rather than Y(R). 

Finally, we note that the global maximum that exists in 
each permutational cell may not be a single zero- 
dimensional point. Because atoms possess spherical sym- 
metry, the configuration of electrons that corresponds to 
the maximum may be rotated with respect to the three 
Euler angles into a three-dimensional manifold of equiva- 
lent positions. Such rotations preserve the relative orienta- 
tion among the electrons. The only symmetry operation 
performed upon a walker (i.e., a given configuration of 
electrons) capable of transporting it from one cell to an- 
other is the permutation operation. We note that a permu- 
tational exchange between electrons 1 and 2 will not pre- 
serve the relative orientation that existed previously 
between electrons 1 and 2 relative to electron 3. We may 
extrapolate these results to polyatomic systems, where the 
symmetry of the nuclear framework determines the lower 
bound to the dimensionality of the locus of global maxima 
within each permutational cell. The number of rotational 
symmetry axes of infinite order determine the dimension- 
ality of the global maxima. Diatomic molecules possess one 
infinite symmetry axis, and thus the global maxima lie 
along a circle. In the case of H,O, which possesses only one 
twofold axis of symmetry, the global maxima are defined 
by two zero-dimensional points. We caution that the di- 
mensionality of the global maxima within each permuta- 
tional cell must be taken as a lower bound inasmuch as 
there may be other symmetries independent of rotations 
(e.g., inversion). 

V. CONCLUSIONS 

Ceperley proved that all positive (negative) permuta- 
tional cells are equivalent (tiling theorem) for exact wave 
functions.4 Furthermore, Ceperley showed that permuta- 
tional cells are interconnected for free-electron systems in 
which all electrons possess the same spin (i.e., one nodal 
hypersurface separating one positive and one negative 
nodal region). We have demonstrated that these properties 
apply to HF wave functions for Li-C. In the usual case 
where these atoms possess both a and fl spin electrons, our 
results indicate that four nodal regions are formed by the 
intersection of two nodal hypersurfaces. We have found 
that nodal regions are partitioned into permutational cells 
that may be operationally distinguished from each other. 
Although all permutational cells of the same sign are geo- 
metrically equivalent, they bear different topological rela- 
tionships to each other. In this connection, Ceperley’s 
speculation4 that bottlenecks precluding fermion exchange 
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may be responsible for the lack of macroscopic quantum 
effects in fermion systems is particularly noteworthy. 

The random-walk algorithm adopted herein provides a 
simple and straightforward method to map the topology 
and geometry of the nodal regions and cells of N-body 
wave functions. This technique is readily applicable to the 
study of excited-state wave functions where the nodal to- 
pology is expected to be more complex (e.g., nodal regions 
are no longer required to be identical). Toward that end, 
work is currently in progress to examine the nodal prop- 
erties of multideterminantal (both CI and MCSCF) wave 
functions of both ground- and excited-state wave functions. 
We anticipate that this mapping technique may provide a 
straightforward means to diagnose nodal pathologies in an 
N-body wave function that would render it unsuitable for 
use in fixed-node QMC calculations. Finally, this simula- 
tion technique is not restricted to the electronic problem 
and may be applied to the mapping of rovibrational wave 
functions as well. 

ACKNOWLEDGMENTS 

This research is supported in part by the Director, 
Office of Energy Research, Office of Basic Energy Sciences, 
Division of Chemical Sciences of the U.S. Department of 
Energy. The authors are indebted to Professor David M. 
Ceperley (University of Illinois) for a critical reading of 
this manuscript. We also thank Mr. David French (Sandia 
National Laboratories) for technical support in drafting 
the figures. 

‘J. B. Anderson, Phys. Rev. A 35, 3550 (1987). 
‘J. B. Anderson, J. Chem. Phys. 65, 4121 (1976). 
‘R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr., J. Chem. Phys. 82, 
2700 (1985). 

4D. M. Ceperley, J. Stat. Phys. 63, 1237 (1991). 
‘W. A. Lester, Jr. and B. L. Hammond, Annu. Rev. Phys. Chem. 41,283 

(1990). 
‘5. M. Hammersley and D. C. Handscomb, Monte Carlo Methods 

(Wiley, New York, 1964). 
‘K. E. Schmidt and M. H. Kales, in Monte Carlo Methods in Statistical 

P!zysicr 22, Vol. XIV of Topics in Current Physics, edited by K. Binder 
( Springer-Verlag, New York, 1984). 

*D. M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833 (1984). 
9(a) M. H. Kalos, J. Stat. Phys. 63, 1269 (1991); (b) R. Bianchi, D. 

Bressanini, P. Cremaschi, and G. Morosi, Chem. Phys. Lett. 184, 343 
( 1991); (c) J. B. Anderson, C. A. Traynor, and B. M. Boghosian, J. 
Chem. Phys. 95, 7418 (1991). 

“See, for example, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, 
Commun. Math. Phys. 117,49 ( 1988); H. Donnelly and C. Fefferman, 
J. Am. Math. Sot. 3, 333 (1990). 

“D. J. Klein and H. M. Pickett, J. Chem. Phys. 64, 4811 (1976). 
I2 (a) M. Caffarel and P. Claverie, J. Chem. Phys. 88, 1088 ( 1988); (b) 

M. Caffarel, P. Claverie, C. Mijoule, J. Andzelm, and D. R. Salahub, J. 
Chem. Phys. 90, 990 (1989). 

” P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic, New 
York, 1979), Chap. 6. 

14E Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 
(Academic, New York, 1974), Vol. 14, Nos. 3-4. 

“M. Dupuis, J. D. Watts, H. 0. Villar, and G. J. B. Hurst, HONDO 7.0 
(IBM Corp., Kingston, NY, 1987). 

16T. H. Dunning, J. Chem. Phys. 53, 2823 (1970). 
“S. Huzinaga, J. Chem. Phys. 42, 1293 (1965). 
18W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 

Numerical Recipes (Cambridge University Press, Cambridge, 1989). 
19S. Chandrasekhar, Rev. Mod. Phys. IS, 1 ( 1943). 
“D. M. Ceperley (private communication). 

J. Chem. Phys., Vol. 97, No. 12, 15 December 1992 


