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jsempe@colmex.mx

Preliminary version: August 2000; latest version: 23rd July 2007.

Abstract: Without public goods and under fairly standard assumptions,

in Hammond and Sempere (2006) we show that freeing migration enhances

the potential Pareto gains from free trade. Here we present a generalization

allowing local public goods subject to congestion. Unlike the standard liter-

ature on fiscal externalities, our result relies on fixing both local public goods

and congestion levels at their status quo values. This allows constrained effi-

cient and potentially Pareto improving population exchanges regulated only

through appropriate residence charges, which can be regarded as Pigouvian

congestion taxes.

JEL Classification: F22, F13, D61, C62.

Keywords: Migration, gains from trade, general equilibrium, non-convexities,

indivisibilities, local public goods, congestion.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Standard first-best results on the gains from trade require demonstrating

the existence of a competitive equilibrium with lump-sum redistribution

arranged to ensure that everybody gains — or at least nobody loses —

relative to the status quo. When there are no public goods, in Hammond

and Sempere (2006) we present similar results on the gains from migration.

There the main obstacle to proving a suitable existence theorem was the

obvious non-convexity that arises because no potential migrant can be in

more than one place at the same time. Nevertheless, in a continuum economy

with appropriately dispersed agent characteristics, standard assumptions

ensuring gains from trade also ensure gains from migration.

A second apparent obstacle to achieving a potential Pareto improvement

from free migration arises from public goods and externalities, which are ig-

nored in most of the existing literature on gains from trade. Yet neglecting

local public goods subject to congestion seems especially damaging.1 Be-

cause the cost of providing such goods is obviously affected by migration, no

simple extension of our earlier results is possible. Nevertheless, we argue in

this paper that potential gains from trade and from appropriate migration

remain possible, provided that both the provision of public goods and the

congestion levels affecting those goods are frozen at their status quo lev-
1We recall the important distinction between pure public goods and public goods sub-

ject to congestion. Examples of pure public goods include broadcast radio or television,

streetlighting, etc., whose cost of provision is not directly related to population, so is

unaffected by migration or congestion. If all public goods were of this kind, routine mod-

ifications of our earlier results imply that Pareto gains from free migration are possible

in an economy where the supplies of public goods in each nation or locality are frozen at

their status quo levels.
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els. Of course, such results do not exclude additional potential Pareto gains

from appropriate changes in public good supply and/or congestion levels.

Our point is that such changes are not needed in order to allow potential

Pareto gains to emerge from a combination of free trade and free exchange

of population.

The paper is organized as follows. First, sections 2–3 describe the basic

model. Section 4 introduces congestion costs, as well as appropriate res-

idence charges that can mediate efficient population exchange. Section 5

defines “sagacious” wealth distribution rules. Section 6 demonstrates exis-

tence of a (suitably constrained) compensated equilibrium. Section 7 intro-

duces additional assumptions required to ensure that at least one commodity

price is positive in that compensated equilibrium. Finally, using appropriate

dispersion and convexity assumptions, Section 8 demonstrates the main re-

sult that there is an appropriate conditional competitive equilibrium. This

proves that potential Pareto gains from adding free migration to free trade

are possible even in the presence of national or local public goods subject

to congestion. Section 9 provides a brief concluding discussion.

2 Notation, Model and Basic Assumptions

2.1 Nations, Consumers and Personal Histories

Suppose the world consists of a finite set K of different countries — or, more

generally, different physical locations — indexed by k. To allow time for

migration as well as uncertainty, consider an intertemporal Arrow–Debreu

economy in which D is the finite set of relevant date–event pairs, with a tree

structure starting at d = 0.
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Suppose there is a fixed continuum of consumers I indexed by i, with I

as a σ-field of measurable subsets. Also, let ν be the appropriate measure,

so that (I, I, ν) is the atomless measure space of consumers.2

Each individual consumer i ∈ I is assumed to have a migration plan in

the form of a mapping kiD : D → K. Thus, ki(d) indicates the nation in

which consumer i plans to reside and function as an economic agent at each

date–event pair d ∈ D. Obviously, the set of all possible migration plans is

the (finite) Cartesian product set KD. At d = 0, history determines ki(0)

as the nation which the consumer inhabits as the economy starts.

Our model of how migration affects congestion will recognize that differ-

ent kinds of consumer may place different burdens on the public sectors of

the nations or localities they inhabit. So we extend the description of each

consumer i ∈ I to include, for each date–event d ∈ D, an index ei(d) ∈ E

of all relevant demographic or other household characteristics affecting the

costs of providing local public goods. Examples of such characteristics are

a particular household’s entitlements in different date–event pairs for pub-

licly provided education, health services, welfare payments, pensions, etc.

Essentially, in the static model of Conley and Wooders (1996, 1997), each

e ∈ E is a “crowding type.” We assume that the range E of possible char-

acteristics is a finite set, and let eiD = 〈ei(d)〉d∈D ∈ ED denote consumer

i’s characteristic history.

Each consumer i’s migration plan and characteristic history are jointly

represented by the pair (kiD, eiD) which belongs to the Cartesian product

domain KD × ED of personal histories. For the remainder of the paper it

will be convenient to represent each consumer i’s chosen personal history by
2In Hammond and Sempere (2006) we discuss why it might be better not to let I be

the unit interval, and how to construct the appropriate non-atomic probability measure ν.
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indicator variables defined by

mi
k(e, d) :=

 1 if ki(d) = k and ei(d) = e;

0 otherwise.
(1)

In this way the set M of possible personal histories mi becomes a subset of

REDK , but with each member having exactly one component mi
k(e, d) equal

to 1 for each d ∈ D, with all others equal to 0. In particular, each mi has

exactly #D non-zero components.

2.2 Demographic Histories as Congestion Profiles

The proportion of the world’s inhabitants living in country k and having

characteristic e at date–event d is given by

µk(e, d) := ν
(
{ i ∈ I | mi

k(e, d) = 1 }
)
. (2)

So at any date–event d ∈ D, the statistical distribution of consumers in

country k having different characteristics e ∈ E is specified by the vec-

tor of proportions µE
k (d) ∈ RE

+. Let µED
k := 〈µE

k (d)〉d∈D ∈ RED
+ denote

the “national demographic history.” Let µEDK := 〈µED
k 〉k∈K denote the

corresponding “world demographic history,” which we usually just call a

congestion profile. Note that µEDK =
∫
I midν.

2.3 Private Goods

Assume that there is a finite set G(d) of dated contingent private commodi-

ties in each date–event d ∈ D. Suppose this set is partioned into pairwise

disjoint components T (d) and Nk(d) (k ∈ K), where Nk(d) is the set of goods

in date–event d specific to country k that are not traded internationally, and

T (d) is the set of internationally traded goods. We assume that each set
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Nk(d) includes all relevant kinds of labour, since labour is not traded directly

across borders. Rather, migrants move across borders to supply labour in

other nations. Then the relevant set of dated contingent commodities is

G := ∪d∈D G(d) and the finite-dimensional commodity space is RG.

Let Gk(d) := T (d)∪Nk(d) denote the subset of goods that can be traded

in nation k at date–event d. Also, let Gk := ∪d∈D Gk(d) denote the subset of

all goods that can be traded in nation k; these will be the goods which can

appear as inputs and/or outputs in production activities within nation k.

Finally, let G(m) := ∪d∈D Gk(d)(d) denote the subset that can be traded by

any consumer with the personal history m = (kD, eD).

2.4 Fixed Public Goods and Congestion Profile

A Pareto efficient allocation of private and public goods also requires an

efficient allocation of congestion, with the appropriate level of the profile

µEDK . However, there is no need here to assume that any such efficient

allocation of total congestion occurs.

Instead, we consider what happens when public good provision is fixed

at its status quo value, as is the congestion profile µEDK . In particular, indi-

viduals are allowed to migrate and to change their congestion characteristics.

But in the equilibrium we look for there must be other individuals choosing

to make offsetting changes whose overall effect is that the congestion pro-

file µEDK remains at its status quo level µ̄EDK . That is, individuals are

restricted to exchanging places in equilibrium. Even so, in addition to the

usual gains from trade, there can still be gains from migration in the form

of appropriate population exchanges between different countries, allowing

each household to go wherever it wants taking into account its preferences,
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its opportunities to earn labour income, and also what residence charges it

is expected to pay.

3 Consumers’ Characteristics

3.1 Feasible Sets

Each consumer i ∈ I will be modelled as choosing some pair (xi,mi) that

consists of a net trade vector xi ∈ RG and a personal history mi ∈ REDK .

Different personal histories obviously incur different costs. Also, different

vectors of public goods in different localities allow different quantities of

private goods to be consumed, depending on the consumer’s own personal

history, including migration decisions. For these reasons, we assume that

each consumer i’s net trade vector xi ∈ RG is restricted to a conditional

feasible set Xi(mi) that is compatible with the chosen personal history mi ∈

M and the frozen public good vector. Formally:

(A.1) For every personal history mi ∈ M , each consumer i ∈ I has a (pos-

sibly empty) closed conditional feasible set Xi(mi) satisfying xi
g = 0 for all

g 6∈ G(mi). Also, the free disposal of i’s tradable commodities condition

holds — requiring that, whenever xi ∈ Xi(mi) and x̃i = xi with x̃i
g = 0 for

all g 6∈ G(mi), then x̃i ∈ Xi(mi). In addition, each consumer i ∈ I has a

non-empty overall conditional feasible set defined by

Xi := { (xi,mi) ∈ RG ×KD | xi ∈ Xi(mi) }. (3)

3.2 Preferences

Given fixed public good vectors in each locality, consumers will be allowed to

have preferences over combinations of personal histories and net trade vec-
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tors. In our continuum economy, there is no need to assume that preferences

are convex. So our next assumption is:

(A.2) Each consumer i ∈ I has a weak preference relation %i defined on Xi

that is reflexive, complete, transitive, continuous, as well as weakly mono-

tonic in i’s tradable commodities in the sense that, whenever xi ∈ Xi(mi)

and x̃i = xi with x̃i
g = 0 for all g 6∈ G(mi) and x̃i

g > xi
g for all g ∈ G(mi),

then (x̃i,mi) �i (xi,mi), where �i denotes the corresponding strict prefer-

ence relation.

Note that (xi,mi) ∈ Xi ⇐⇒ (xi,mi) %i (xi,mi) because %i is com-

plete. So each consumer i’s feasible set Xi and preference relation %i are

characterized completely by the graph

Γi := {(xi,mi, x̃i, m̃i) ∈ RG ×M × RG ×M | (xi,mi) %i (x̃i, m̃i)}

of %i. By continuity, this is a closed subset of RG ×M × RG ×M .

3.3 Characteristics

As has become standard since the work of Hildenbrand (1974), we assume:

(A.3) The consumer characteristic space Θ of feasible sets X and of prefer-

ence relations %, as represented by their closed graphs Γ, is endowed with

the topology of closed convergence and the associated Borel σ-field B. More-

over, the mapping i 7→ Γi from I to RG×M ×RG×M is measurable w.r.t.

the respective σ-fields I and B.
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4 Producers, Feasible Allocations and Profits

4.1 National and International Production

In this paper there is no need to pay attention to individual producers or

their net output vectors. Instead, all our analysis will involve the aggregate

net output vector yk and aggregate production set of each nation k ∈ K.

We assume:

(A.4) Each nation k ∈ K, given its fixed public environment and status

quo congestion levels, has a closed and convex conditional production set

Yk ⊂ RG whose members are vectors with components that measure the

net outputs per head of world population. In addition, ykg = 0 whenever

g 6∈ Gk and yk ∈ Yk — i.e., Yk ⊂ RGk × {0}. Finally, there is free disposal

of nation k’s tradable commodities in the sense that, if yk ∈ Yk and ỹk 5 yk

with ỹk ∈ RGk × {0}, then ỹk ∈ Yk.

We allow that 0 6∈ Yk because of the need to produce the status quo

public good vector in each nation.

4.2 Feasible Allocations and the Status Quo

An allocation (xI ,mI ,yK) is a jointly measurable function i 7→ (xi,mi) ∈

RG×REDK specifying both each individual’s net trade vector and personal

history, together with an international profile of net output vectors yK =

〈yk〉k∈K ∈ YK =
∏

k∈K Y k. The allocation (xI ,mI ,yK) is feasible if:

(i) (xi,mi) ∈ Xi a.e. in I;

(ii) yk ∈ Yk for all k ∈ K;

(iii)
∫
I xidν =

∑
k∈K yk.
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Condition (iii) requires the average net demand vector of all consumers

to equal the aggregate net output of producers per head of world population.

The combined gains from free trade and migration will accrue from an

allocation that is Pareto superior to a prespecified status quo feasible allo-

cation (x̄I , m̄I , ȳK). Let m̄I denote the status quo distribution of personal

histories in the world population. The corresponding congestion profile is

µ̄EDK =
∫
I m̄idν.

Relative to the status quo, for each i ∈ I, let

X̄i := { (xi,mi) ∈ Xi | (xi,mi) %i (x̄i, m̄i) } (4)

denote the set of i’s allocations that are weakly preferred to the status quo.

Assume that:

(A.5) For each i ∈ I, the set X̄i has a lower bound xi ∈ RG such that

(xi,mi) ∈ X̄i implies xi = xi; also, the mapping i 7→ xi is integrable with a

mean lower bound x :=
∫
I xidν that is a finite vector in RG.

4.3 Bounded Production Sets

By (A.5), any feasible allocation (xI ,mI ,yK) with (xi,mi) ∈ X̄i for a.e.

i ∈ I must satisfy x 5
∫
I xidν =

∑
k∈K yk. Define the set

YK(x) := {yK ∈ YK |
∑
k∈K

yk = x } (5)

of feasible international production allocations that this inequality. Assume

that:

(A.6) The set YK(x) is bounded.

Thus, if aggregate global inputs are enough to allow an allocation that is

Pareto non-inferior to the status quo, there are bounds on the outputs in

each separate country, as well as in the international economy as a whole.
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Following the idea pioneered by Arrow and Debreu (1954), (A.6) implies

there are compact sets Ck ⊂ RG for each k ∈ K which are large enough

for the Cartesian product
∏

k∈K Ck to contain YK(x) within its interior.

Hence, any feasible allocation (xI ,mI ,yK) with (xi,mi) ∈ X̄i for a.e. i ∈ I

must satisfy yk ∈ Ŷk := Yk ∩ Ck for all k ∈ K.

4.4 Profit Maximization

The domain of possible commodity price vectors is allowed to be the whole

of RG
+. Later, Section 8 will discuss when there exists a non-zero equilibrium

commodity price vector.

Assume that producers in each nation k ∈ K maximize profits taking

as given the price vector p = 0, the fixed vector of public goods they have

to supply, and the fixed national congestion profile µ̄ED
k . For each nation

k ∈ K and price vector p = 0, because each Ŷk is compact, we can define

ηk(p) := arg

πk(p) :=

 max
yk

{ p yk | yk ∈ Ŷk } (6)

as the (non-empty) set of profit maximizing aggregate net output vectors

and the associated aggregate profit per head of world population. Note that

πk(p) may be negative because of the cost of producing public goods in

nation k. Note too that, as Arrow and Debreu (1954) argue, any feasible

allocation (xI ,mI ,yK) with (xi,mi) ∈ X̄i for a.e. i ∈ I and yk ∈ ηk(p) for

any k ∈ K must satisfy yk ∈ arg maxyk
{ p yk | yk ∈ Yk }.

4.5 Residence Charges

In our model of the world economy, migration creates externalities by adding

to (or reducing) the congestion cost of providing public goods in both the

11



source and destination localities. Given any fixed congestion profile µEDK ,

a constrained Pareto efficient allocation of these externalities can be en-

sured by instituting a suitable Pigouvian tax scheme. The allocation is only

constrained Pareto efficient because nothing is done to choose appropriate

national public environments and congestion levels.

The Pigouvian tax scheme requires levying a net congestion or residence

charge tk(e, d) on each consumer of characteristic e living in country k at

date–event d. Then consumers choose their own personal histories, as well

as their net trade vectors, subject to a budget constraint that reflects the

appropriate residence charges for living in each location in each date–event.

Let t ∈ REDK denote the vector 〈tk(e, d)〉(e,d,k)∈E×D×K of all residence

charges. Each nation k ∈ K is assumed to set its own residence charges

tED
k = 〈tk(e, d)〉(e,d)∈E×D in order to clear markets with its congestion profile

frozen at the status quo level µ̄ED
k .

An extended price vector is a non-zero pair (p, t) ∈ (RG
+×REDK)\{(0, 0)}.

4.6 Constrained Allocations

Given the status quo congestion profile µ̄EDK , define its support

S := { (e, d, k) ∈ E ×D ×K | µ̄k(e, d) > 0 }. (7)

In order to maintain the status quo congestion profile, agents must be dis-

suaded from choosing any personal history outside the set

MS := {m ∈ M | mk(e, d) = 1 =⇒ (e, d, k) ∈ S }. (8)

In Section 7.4 below, we will show how this can be achieved by setting high

enough residence charges tk(e, d) for all (e, d, k) 6∈ S.
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Furthermore, note that the status quo for agent i satisfies m̄i 6∈ MS

unless m̄i
k(e, d) = 1 for some (e, d, k) ∈ (E × D × K) \ S — i.e., for some

(e, d, k) such that µ̄k(e, d) = 0. Of course, this can happen only for a null

set. It follows that m̄i ∈ MS a.e. in I. From now on, we disregard those

i ∈ I for whom m̄i 6∈ MS . Also, define each consumer i’s constrained set as

X̄iS := { (xi,mi) ∈ X̄i | mi ∈ MS }. (9)

5 Sagacious Wealth Distribution Rules

5.1 Wealth Distribution Rules

A wealth distribution rule wI(p, t) specifies each consumer i’s wealth level

wi as a function of the extended price vector (p, t), and so determines each

consumer’s budget constraint p xi + t mi ≤ wi(p, t).

Budget feasibility for the world as a whole requires that∫
I
wi(p, t) dν =

∑
k∈K

πk(p) + t µ̄EDK . (10)

The last term arises because the revenue from residence charges can either

be distributed to consumers directly, or else used to reduce the losses of

firms which provide public goods and so lower the taxes consumers must

pay to subsidize these firms’ losses. International transfers are allowed; see

Hammond and Sempere (1995) for a discussion of when they can be avoided

in the absence of migration.

5.2 The Normalized Price Domain

In each date–event d ∈ D, every individual i ∈ I has to choose precisely one

(k, e) ∈ K ×E such that mi
k(e, d) = 1. This implies that only the algebraic
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differences tk(e, d) − tk′(e′, d) between the residence charges in different lo-

cations k, k′ for different kinds of household e, e′ in each date–event d are

relevant to the left-hand side p xi+
∑

d∈D tk(e, d) mk(e, d) of the budget con-

straint p xi+t mi ≤ wi(p, t). The absolute values of tk(e, d) are unimportant,

except insofar as they amount to uniform head taxes (or subsidies) affecting

everybody in the world, regardless of location k and characteristic e. For

this reason, we can always normalize prices by subtracting the minimum

residence charge, so that in every date–event d ∈ D the cheapest location

has a normalized residence charge equal to zero.

Thus, let TS denote the set of vectors tS ∈ RS
+ of residence charges

satisfying min(e,k) { tk(e, d) | (e, d, k) ∈ S } = 0 for all d ∈ D. Then define

∆S := { (p, tS) ∈ RG
+ × TS |

∑
g∈G

pg +
∑

(e,d,k)∈S

tk(e, d) = 1 } (11)

as the set of normalized price systems. Note that whenever (p, tS) ∈ ∆S one

has
∑

g∈G pg ≤ 1 and tS m ≥ 0 for all m ∈ MS .

5.3 Sagacious Rules

Given any extended price vector (p, t) ∈ RG
+ × REDK , define

ēiS(p, t) := inf
xi,mi

{ p xi + t mi | (xi,mi) ∈ X̄iS } (12)

This is the infimum wealth consumer i needs to sustain the status quo stan-

dard of living, subject to the constraint mi ∈ MS . Note how (A.5) implies

that ēiS(p, t) > −∞.

Definition: The wealth distribution rule wI(p, t) is sagacious if, for all

p = 0 and t ∈ REDK , it satisfies (10) (i.e., it is budget feasible) and:

(i) whenever t̃ ∈ REDK satisfies t̃k(e, d) = tk(e, d) for all (e, d, k) ∈ S,

then wi(p, t) = wi(p, t̃) for all i ∈ I;
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(ii) wi(p, t) ≥ ēiS(p, t) a.e. in I;

(iii)
∫
I ēiS(p, t)dν <

∑
k∈K πk(p) + t µ̄EDK implies that wi(p, t) > ēiS(p, t)

a.e. in I.

Here part (i) reflects the idea that only the prices of residence permits for

triples (e, d, k) ∈ S are relevant for the equilibrium whose existence we wish

to demonstrate. So the wealth distribution rule should not depend on the

prices of other residence permits. Parts (ii) and (iii) are obvious adaptations

of Grandmont and McFadden’s (1972) original definition.

Note how expenditure minimization implies that ēiS(p, t) ≤ p x̄i + t m̄i

a.e. in I, whereas profit maximization implies πk(p) ≥ p ȳk for all k ∈ K.

Together with feasibility of the status quo allocation, these imply that∫
I
ēiS(p, t) dν ≤

∫
I
(p x̄i + t m̄i) dν =

∑
k∈K

p ȳk + t µ̄EDK

≤
∑
k∈K

πk(p) + t µ̄EDK

for all p = 0 and t ∈ REDK . It follows that (ii) is always possible. So are (i)

and (iii) if, for instance, we choose

wi(p, t) ≡ ēiS(p, t) + θi

[∑
k∈K

πk(p) + t µ̄EDK −
∫

I
ēiS(p, t)dν

]

for positive constants θi (all i ∈ I) such that the function i 7→ θi is integrable,

with
∫
I θi dν = 1. The key Lemma 1 in Hammond and Sempere (2006)

confirms that such a rule is integrable w.r.t. i, and continuous w.r.t. (p, t).

After this discussion, an obvious assumption is that:

(A.7) The wealth distribution rule wI(p, t) is integrable w.r.t. i, continuous

w.r.t. (p, t), and sagacious.

15



6 Constrained Compensated Equilibrium

6.1 Conditional Walrasian Equilibrium

Given the frozen levels of public goods and congestion profile, as well as the

wealth distribution rule wI(p, t), and the particular extended price vector

(p, t) ∈ RG
+ × REDK , define each consumer i’s conditional budget set as

Bi(p, t) := { (xi,mi) ∈ Xi | p xi + t mi ≤ wi(p, t) }. (13)

Then consumer i’s conditional Walrasian or uncompensated demand set

γi(p, t) is defined as

{ (x̂i, m̂i) ∈ Bi(p, t) | (xi,mi) �i (x̂i, m̂i) =⇒ p xi + t mi > wi(p, t) }. (14)

It is easy to see how assumptions (A.1), (A.2), and (A.7) together imply that

γi(p, t) ⊂ X̄i a.e. in I. In fact, the constraint (xi,mi) ∈ X̄i cannot bind

when the wealth distribution rule is sagacious and so wi(p, t) ≥ ēiS(p, t).

Given both fixed quantities of public goods and the fixed congestion

profile µ̄EDK =
∫
I m̄I dν, a conditional Walrasian equilibrium is a feasible

allocation (x̂I , m̂I , ŷK), together with an extended price vector (p̂, t̂) ∈ RG
+×

REDK , such that:

(i)
∫

I
m̂i dν = µ̄EDK ;

(ii) ŷk ∈ ηk(p̂) for all k ∈ K;

(iii) (x̂i, m̂i) ∈ γi(p̂, t̂) a.e. in I.

Using (4) and (9), we also define the constrained budget set

B̄iS(p, t) := { (xi,mi) ∈ X̄iS | p xi + t mi ≤ wi(p, t) }. (15)

Consumer i’s constrained compensated demand set γ̄iS
C (p, t) is defined as

{ (x̂i, m̂i) ∈ B̄iS(p, t) | (xi,mi) %i (x̂i, m̂i) =⇒ p xi + t mi ≥ wi(p, t) }. (16)
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A constrained compensated equilibrium is like a conditional Walrasian equi-

librium in that it satisfies parts (i) and (ii) of the definition, but only the

modified version of part (iii) requiring that (x̂i, m̂i) ∈ γ̄iS
C (p̂, t̂) a.e. in I. Of

course, this implies that (x̂i, m̂i) %i (x̄i, m̄i) a.e. in I.

6.2 A First Existence Result

Our first result is that, given the fixed congestion levels µ̄EDK , there exists

a constrained compensated equilibrium.

Lemma 1: Suppose assumptions (A.1)–(A.7) are all satisfied. Then there

is a constrained compensated equilibrium (x̂I , m̂I , ŷK , p̂, t̂).

Proof: We apply Lemma 2 in Hammond and Sempere (2006), to the

commodity space RG × RS . It demonstrates existence of a constrained

compensated equilibrium with free disposal. That is, there must exist

(x̃I , m̂I , ỹK , p̂, t̂) satisfying (x̃i, m̂i) ∈ γ̄iS
C (p̂, t̂) for a.e. i ∈ I, as well as

ỹk ∈ ηk(p̂) for all k ∈ K, with
∫
I x̃i dν 5

∑
k∈K ỹk and∫

I
m̂i

k(e, d) dν ≤ µ̄k(e, d) (17)

for all (e, d, k) ∈ S. But by definition (7), for all (e, d, k) 6∈ S one has

µ̄k(e, d) = 0 = m̂i
k(e, d) a.e. in I. Also, definition (1) guarantees that

∑
(k,e)∈K×E

m̂i
k(e, d) = 1 =

∑
(k,e)∈K×E

µ̄k(e, d)

for all i ∈ I and D ∈ D, implying that

∑
(k,e)∈K×E

∫
I
m̂i

k(e, d) dν = 1 =
∑

(k,e)∈K×E

µ̄k(e, d).

Combining this with (17), it follows that
∫
I m̂i dν = µ̄EDK .
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Next, arguing as in the proof of Lemma 3 in Hammond and Sempere

(2006), the free disposal properties implied by (A.1) and (A.2), or alterna-

tively by (A.6), guarantee the existence of an alternative pair (x̂I , ŷK) with

x̂i = x̃i for almost all i ∈ I and ŷk 5 ỹk for all k ∈ K satisfying p̂ x̂i = p̂ x̃i

a.e. in I, as well as p̂ ŷk = p̂ ỹk for all k ∈ K, with
∫
I x̂i dν =

∑
k∈K ŷk. Then

(x̂I , m̂I , ŷK , p̂, t̂) is the required constrained compensated equilibrium.

7 Bounding the Prices of Residence Permits

7.1 First Example with Zero Commodity Prices

For the following two examples, the only possible extended price vectors in

constrained compensated equilibrium may have zero prices for all physical

commodities in the economy, with non-zero prices only for residence permits.

Because of non-satiation in commodities, such an extended price vector can

never be a Walrasian equilibrium. This is true even though the examples

satisfy assumptions (A.1)–(A.6).

Suppose there is a single good, so #G = 1, and just one date–event,

so D = {0}. Assume the set K consists of two nations, labelled A and B.

Finally, assume there is only one crowding type, which can therefore be

ignored. Thus, each i ∈ I has a personal history ki ∈ K = {A,B }.

Each consumer i ∈ I is assumed to have a conditional feasible set

Xi(A) = Xi(B) which, for some real lower bound xi < 0, is equal to the

closed half-line [xi,∞) ⊂ R, independent of the choice of residence.

In the first example we assume that the lower bounds xi of all individuals

i ∈ I are distributed with a positive continuous density over the whole of

the closed half-line (−∞,−1] ⊂ R. For example, the distribution could be

truncated normal. Finally, assume each consumer i ∈ I has preferences on
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the space [xi,∞)×{A,B } of net trade/country pairs which are represented

by the utility function ui(x, k) defined for all x = xi by

ui(x,A) := x− 2 xi and ui(x,B) := x.

Suppose the status quo allocation is autarkic, with all consumers residing

in B. Hence, (x̄i, k̄i) = (0, B) for all i ∈ I, and S = {B}. Then the only

feasible allocation with the same congestion profile and with (x̂i, k̂i) %i

(0, B) for a.e. i ∈ I must have k̂i = B and x̂i ≥ 0. But then feasibility

implies x̂i = 0 for a.e. i ∈ I. Hence, the only such allocation combines

autarky with immobility.

Let wI(p, t) be any wealth distribution rule satisfying (A.7). In order

for (p, tA, tB) to be a consstrained compensated equilibrium price vector, for

a.e. i ∈ I one must have p xi ≥ p x̂i = 0 whenever xi ≥ x̂i = 0. So p ≥ 0.

Furthermore, for a.e. i ∈ I, whenever xi ≥ 2xi one has (xi, A) %i (0, B)

and so p xi+tA ≥ tB. In particular, tA ≥ tB when xi = 0 and 2 p xi+tA ≥ tB

when xi = 2 xi. Our assumptions imply, however, that no matter how

large the real positive constant c may be, there exists a non-null set Ic of

individuals i ∈ I for whom xi ≤ −c and so p c ≤ 2(tA − tB). This is only

possible if p ≤ 0; therefore p = 0.3

7.2 Second Example with Zero Commodity Prices

The second example shares many features in common with the first. There

are two types of consumers, however, each with a common distribution of

the lower bounds xi represented by a continuous density function restricted

to the interval [−2,−1]. Consumers of congestion type a have preferences
3This example also satisfies assumptions (A.8)–(A.11) set out below. In particular,

(A.9) is trivially satisfied because S = {B} and so ∆S collapses to the single point {µ̄S}.
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represented by a utility function ui(x, k) with

ui(x, A) := x and ui(x,B) := x + 3,

whereas those of congestion type b have preferences represented by

ui(x,A) := x and ui(x,B) := x.

The status quo is autarky with all type a consumers living in A, but positive

proportions of type b consumers living in each country.

As in the first example, the only feasible allocation with the same con-

gestion profile and with (x̂i, k̂i) %i (0, B) for a.e. i ∈ I must combine au-

tarky with immobility. Also, again as in the first example, given any wealth

distribution rule wI(p, t) satisfying (A.7), in order for (p, tA, tB) to be a

constrained compensated equilibrium price vector, one must have p ≥ 0.

For type a consumers, compensated equilibrium requires tB + p xi ≥ tA

for all xi ≥ −2, so tB − 2p ≥ tA. For type b consumers, compensated

equilibrium requires tA + p xi ≥ tB for all xi ≥ 0, so tA ≥ tB. Hence

tB − 2p ≥ tA ≥ tB, which is only possible if p ≤ 0; therefore p = 0.4

7.3 Boundedly Sagacious Rules

The crucial feature of the example in Section 7.1 is the lack of any uniform

upper bound on the amount individuals are willing to pay for being allowed

to move from B to A. An extra assumption will bound what consumers can

afford to pay for relevant changes in personal history.

Let 1G denote the vector (1, 1, . . . , 1) ∈ RG. The sagacious wealth

distribution rule wI(p, t) is said to be boundedly sagacious if there ex-

ists a uniform scalar bound α ∈ R+ such that the status quo allocation
4This second example also satisfies assumptions (A.7*) and (A.9)–(A.11) set out below.
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(x̄I , m̄I , ȳK), and the lower bounds xi (i ∈ I) of (A.5), together satisfy

wi(p, t) ≤ p (xi + α 1G) + t m̄i for a.e. i ∈ I, and for all (p, t) ∈ RG
+ ×REDK .

After this definition, we strengthen (A.7) by assuming that:

(A.7*) The wealth distribution rule wI(p, t) is integrable w.r.t. i, continuous

w.r.t. (p, t), and boundedly sagacious.

A wealth distribution rule wI(p, t) satisfying (A.7*) exists provided that

ēiS(p, t) ≤ p (xi + α 1G) + t m̄i. But ēiS(p, t) ≤ p x̄i + t m̄i and p = 0. So an

obvious sufficient condition allowing (A.7*) to be satisfied is that the status

quo net trade vectors satisfy x̄i 5 xi+α 1G for a.e. i ∈ I, with α independent

of i. This assumption is actually quite reasonable, but unnecessarily strong.

7.4 The Restricted Price Domain

In Section 4.6 it was claimed that setting residence charges sufficiently high

would dissuade consumers from choosing any personal history outside the

set MS . Given that m̄i ∈ MS for a.e. i ∈ I, this claim can now be justified

by the following result:

Lemma 2: Assume (A.1)–(A.6) and (A.7*) are satisfied, and (p, t) ∈ ∆S

with

tk(e, d) > α + max
m

{ t m | m ∈ MS } for all (e, d, k) 6∈ S. (18)

Then any i ∈ I with m̄i ∈ MS has mi ∈ MS for all (xi,mi) ∈ Bi(p, t), as

well as X̄iS = X̄i and B̄iS(p, t) = Bi(p, t) ∩ X̄i.

Proof: Consider any (xi,mi) ∈ B̄iS(p, t). By (A.5) one has (xi,mi) ∈ X̄i

and so xi = xi. But p = 0, implying that p xi + t mi ≥ p xi + t mi. Then

(A.7*) implies that p xi + t mi ≤ wi(p, t) ≤ p (xi + α 1G) + t m̄i and so

t (mi − m̄i) ≤ p α 1G ≤ α, given that p 1G ≤ 1 for all (p, t) ∈ ∆S .
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Consider any (e, d, k) 6∈ S. Because m̄i ∈ MS , the hypothesis of the

lemma implies that t mi ≤ p α 1G + t m̄i < tk(e, d). Because t = 0 and

mi
k(e, d) ∈ { 0, 1 } for all (e, d, k) ∈ E ×D ×K, it follows that mi

k(e, d) = 0

for all (e, d, k) 6∈ S — i.e., that mi ∈ MS .

The rest of the proof is immediate from definitions (8) and (9).

For the conclusion of Lemma 2 to hold, it is enough to make the resi-

dence charges tk(e, d) sufficiently high for all (e, d, k) 6∈ S. Indeed, consider

a constrained compensated equilibrium price vector (p̂, t̂S) that clears mar-

kets for commodities g ∈ G and for residence permits (e, d, k) ∈ S. Then

Lemma 2 states that, given any normalized price system (p, t) ∈ ∆S as in

(11), residence charges for (e, d, k) 6∈ S can be set high enough to make the

constraints mi ∈ MS self-enforcing. Accordingly, from now on these other

residence charges can be effectively ignored. We refer simply to a “compen-

sated equilibrium”, without mentioning the constraints mi ∈ MS . Lemmas

1 and 2 assure us that such an equilibrium exists.

7.5 A Desirability Assumption

The example in Section 7.2 shows that our assumptions so far still do not

exclude a zero commodity price vector in compensated equilibrium. To

ensure that at least one divisible commodity has a positive price when some

commodities are indivisible, Broome (1972) introduced the assumption that

divisible goods were overridingly desirable — see also Mas-Colell (1977). In

our model, for all i ∈ I, given any (xi,mi) ∈ Xi and m̃i ∈ M , this would

require the existence of an x̃i ∈ Xi(m̃i) such that (x̃i, m̃i) �i (xi,mi).

Yet some personal histories may be very distasteful to some individuals.

Or they may involve excessive migration, thus making them very expensive
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and inconvenient, if not entirely impossible. Accordingly, we define the set

M̄ iS := {mi ∈ MS | ∃xi ∈ RG : (xi,mi) ∈ X̄i } (19)

of i’s personal histories in MS which, when combined with a sufficiently

desirable commodity bundle, are non-inferior to the status quo. Now we

can state the following restricted version of overriding desirability:

(A.8) For almost all i ∈ I, whenever (xi,mi) ∈ X̄i and m̃i ∈ M̄ iS , there

exists x̃i ∈ Xi(m̃i) such that (x̃i, m̃i) %i (xi,mi).

7.6 Interiority

The final assumption in this section is an interiority condition of a kind that

is familiar in general equilibrium existence proofs.

First, for each d ∈ D, let S(d) := { (e, k) ∈ E × K | (e, d, k) ∈ S }

denote the section of S for the given date–event d. Let ∆S(d) denote the

unit simplex in the associated Euclidean space RS(d). Thus,

∆S(d) := { 〈µk(e, d)〉(e,k)∈S(d) ∈ RS(d)
+ |

∑
(e,k)∈S(d)

µk(e, d) = 1 }.

Of course, the Cartesian product
∏

d∈D ∆S(d) is a subset of the non-negative

orthant RS
+. We assume:

(A.9) The point µ̄S lies in the interior of
∫
I M̄ iSdν relative to

∏
d∈D ∆S(d).

That is, for each d ∈ D there must be an open set U(d) ⊂ RS(d) with

µ̄S ∈
∏
d∈D

[U(d) ∩∆S(d)] ⊂
∫

I
M̄ iSdν.

To illustrate this assumption, suppose some environmental disaster were

to compel a small enough proportion of the population to change their per-

sonal histories from the status quo, while still remaining within the set MS .
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Then (A.9) requires that, with sufficient resources and with some population

exchanges from this modified status quo, one can still reach an allocation

that is Pareto non-inferior to the original status quo.

7.7 A Non-Zero Commodity Price Vector

Lemma 3: Suppose assumptions (A.1)–(A.6), (A.7*) and (A.8)–(A.9) are

satisfied. Then there is a compensated equilibrium (x̂I , m̂I , ŷK , p̂, t̂) which

satisfies (x̂i, m̂i) ∈ X̄i a.e. in I, with p̂ > 0.

Proof: By Lemmas 1 and 2, there is a constrained compensated equi-

librium (x̂I , m̂I , ŷK , p̂, t̂) satisfying (x̂i, m̂i) ∈ X̄i a.e. in I. This is also a

compensated equilibrium provided we make t̂ satisfy (18). So we only have

to show that p̂ > 0.

Suppose p̂ = 0 and consider any m̃i ∈ M̄ iS . Under assumption (A.8),

there exists x̃i ∈ Xi(m̃i) such that (x̃i, m̃i) %i (x̂i, m̂i). Because p̂ = 0,

the definition of compensated equilibrium implies that t̂ m̃i ≥ t̂ m̂i. In

particular, given that m̄i ∈ M̄ iS , one has t̂ m̄i ≥ t̂ m̂i a.e. in I. But

µ̄ =
∫
I m̄idν =

∫
I m̂idν in the compensated equilibrium, implying that∫

I t̂ m̄idν =
∫
I t̂ m̂idν, and so t̂ m̄i = t̂ m̂i a.e. in I. It follows that t̂ mi ≥ t̂ m̄i

whenever mi ∈ M̄ iS , and so t̂ µ ≥ t̂ µ̄ whenever µ ∈
∫
I M̄ iSdν. This evi-

dently contradicts (A.9).

Hence, by contraposition, if (A.1)–(A.6), (A.7*) and (A.8)–(A.9) are all

satisfied, then only p̂ > 0 is possible.

8 Conditional Walrasian Equilibrium

Our one remaining task is to show that, in our economy with fixed public

goods, a fixed congestion profile, and a boundedly sagacious wealth distri-
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bution rule, there exists a conditional Walrasian equilibrium market clearing

extended price vector which includes residence charges. To do this, we shall

provide additional assumptions ensuring that the conditional compensated

equilibrium found in Lemma 3 is also a conditional Walrasian equilibrium.

The extra assumptions are required to overcome an additional complication

due to boundary problems, as discussed in the next subsection.

8.1 Convexity and the Cheaper Point Lemma

By construction, a sagacious wealth distribution rule generates lump-sum

transfers enabling each consumer to afford at least the status quo standard

of living. And if
∫
I ēiS(p, t)dν <

∑
k∈K πk(p) + tµ̄EDK , then almost every

consumer i will have some cheaper point (xi,mi) in the conditional feasible

set Xi that satisfies p xi + t mi < wi(p, t). However, in our model, this may

not be enough to prevent a non-null set of individuals i ∈ I from demanding

some pair (x̂i, m̂i) with a net trade vector x̂i that is a cheapest point of

the relevant conditional feasible set Xi(m̂i) given the chosen personal his-

tory m̂i. This creates a boundary problem which could prevent the existence

of conditional Walrasian equilibrium.

This problem will be resolved by making use of two additional assump-

tions, similar to those used in Hammond and Sempere (2006). First:

(A.10) For every i ∈ I and mi ∈ M , the set Xi(mi) is convex.

This convexity assumption enables us to use the following extension of

the usual cheaper point lemma.

Lemma 4: Suppose that (A.1), (A.2) and (A.10) are satisfied. For any

fixed pair i ∈ I and (p, t) ∈ ∆S satisfying (18), let (x̂i, m̂i) ∈ γiS
C (p, t) be a

constrained compensated demand. Suppose too that, whenever (xi,mi) �i
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(x̂i, m̂i), there exists a “conditional cheaper point” x̃i ∈ Xi(mi) satisfying

p x̃i + t mi < wi(p, t). Then (x̂i, m̂i) ∈ γi(p, t).

Proof: The proof is virtually identical to that of Lemma 3 in Hammond

and Sempere (2006); there is just extra notation because mi is included in

the commodity space and t in the price vector.

8.2 Dispersion

Next, we invoke an additional “dispersion” assumption similar to that used

in Hammond and Sempere (2006), where it is further discussed and analysed.

To state this assumption formally in the present framework, first define

wi(p, t,mi) := min
xi
{ p xi + t mi | xi ∈ Xi(mi) }

as the minimum wealth needed by consumer i at prices (p, t) ∈ ∆S with

p > 0 in order to sustain the personal history mi. If the minimum does not

exist, we take wi(p, t,mi) := +∞. Under assumption (A.3), for each fixed

m ∈ MS the mapping i 7→ wi(p, t,m) is measurable.

Recall definition (19) and then, for each m ∈ M , let

M̄ :=
{

m ∈ MS | ν
(
{ i ∈ I | m ∈ M̄ iS }

)
> 0

}
denote the set of personal histories which are non-inferior for a non-null set

of individuals. Clearly M̄ includes the support of the status quo distribution

of personal histories m̄i (i ∈ I), but it could be much more extensive.

Finally, for each i ∈ I and each (p, t) ∈ ∆S with p > 0, define

I∗(p, t) := { i ∈ I | ∃m ∈ M̄ : wi(p, t) = wi(p, t,m) }

as the set of individuals with a critical level of wealth that is just enough to

afford one of the individual histories m ∈ M̄ . The dispersion assumption is:

(A.11) For all (p, t) ∈ ∆S with p > 0, the set I∗(p, t) has measure zero in I.
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8.3 Existence of Conditional Walrasian Equilibrium

It remains to show that there exists a conditional Walrasian equilibrium

with gains from migration.

Proposition: Under assumptions (A.1)–(A.6), (A.7*), and (A.8)–(A.11),

and given the fixed status quo congestion profile µ̄EDK =
∫
I m̄i dν, there

exists a conditional Walrasian equilibrium (x̂I , m̂I , ŷK , p̂, t̂) with
∫
I m̂i dν =

µ̄EDK and (x̂i, m̂i) %i (x̄i, m̄i) a.e. in I. Also, except when the status quo

is already a conditional Walrasian equilibrium, one has (x̂i, m̂i) �i (x̄i, m̄i)

a.e. in I.

Proof: By Lemma 3, assumptions (A.1)–(A.6), (A.7*) and (A.8)–(A.9)

together imply that there exists a conditional compensated equilibrium

(x̂I , m̂I , ŷK , p̂, t̂) with p̂ > 0 and (x̂i, m̂i) ∈ X̄i a.e. in I. Using (A.10),

(A.11), and Lemma 4, the proof of Hammond and Sempere (2006, Lemma 4)

is easily adapted to show that the conditional compensated equilibrium is a

conditional Walrasian equilibrium. And also that (x̂i, m̂i) �i (x̄i, m̄i) for a.e.

i ∈ I unless the status quo itself is a conditional Walrasian equilibrium.

9 Final Remarks

We have extended the results of Hammond and Sempere (2006) to an econ-

omy with public goods subject to congestion where all nations or localities

keep their public goods and congestion profiles at the status quo levels.

This still allows consumers to exchange places freely, mediated by a system

of residence charges. If the world economy could move to an improved allo-

cation of public goods together with congestion profiles, the combined gains
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to trade and migration (or changing places) would be augmented. Such

further improvements, however, go beyond the scope of this paper.
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