213 research outputs found
The radiation of cynodonts and the ground plan of mammalian morphological diversity
Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades
Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells
Embryonic stem cells (ESC) have the potential to self-renew indefinitely and
to differentiate into any of the three germ layers. The molecular mechanisms
for self-renewal, maintenance of pluripotency and lineage specification are
poorly understood, but recent results point to a key role for epigenetic
mechanisms. In this study, we focus on quantifying the impact of histone 3
acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We
analyze genome-wide histone acetylation patterns and gene expression profiles
measured over the first five days of cell differentiation triggered by
silencing Nanog, a key transcription factor in ESC regulation. We explore the
temporal and spatial dynamics of histone acetylation data and its correlation
with gene expression using supervised and unsupervised statistical models. On a
genome-wide scale, changes in acetylation are significantly correlated to
changes in mRNA expression and, surprisingly, this coherence increases over
time. We quantify the predictive power of histone acetylation for gene
expression changes in a balanced cross-validation procedure. In an in-depth
study we focus on genes central to the regulatory network of Mouse ESC,
including those identified in a recent genome-wide RNAi screen and in the
PluriNet, a computationally derived stem cell signature. We find that compared
to the rest of the genome, ESC-specific genes show significantly more
acetylation signal and a much stronger decrease in acetylation over time, which
is often not reflected in an concordant expression change. These results shed
light on the complexity of the relationship between histone acetylation and
gene expression and are a step forward to dissect the multilayer regulatory
mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
Location patterns of urban industry in Shanghai and implications for sustainability
China’s economy has undergone rapid transition and industrial restructuring. The term “urban industry” describes a particular type of industry within Chinese cities experiencing restructuring. Given the high percentage of industrial firms that have either closed or relocated from city centres to the urban fringe and beyond, emergent global cities such as Shanghai, are implementing strategies for local economic and urban development, which involve urban industrial upgrading numerous firms in the city centre and urban fringe. This study aims to analyze the location patterns of seven urban industrial sectors within the Shanghai urban region using 2008 micro-geography data. To avoid Modifiable Areal Unit Problem (MAUP) issue, four distance-based measures including nearest neighbourhood analysis, Kernel density estimation, K-function and co-location quotient have been extensively applied to analyze and compare the concentration and co-location between the seven sectors. The results reveal disparate patterns varying with distance and interesting co-location as well. The results are as follows: the city centre and the urban fringe have the highest intensity of urban industrial firms, but the zones with 20–30 km from the city centre is a watershed for most categories; the degree of concentration varies with distance, weaker at shorter distance, increasing up to the maximum distance of 30 km and then decreasing until 50 km; for all urban industries, there are three types of patterns, mixture of clustered, random and dispersed distribution at a varied range of distances. Consequently, this paper argues that the location pattern of urban industry reflects the stage-specific industrial restructuring and spatial transformation, conditioned by sustainability objectives
Long-Range Autocorrelations of CpG Islands in the Human Genome
In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes
A History of Chagas Disease Transmission, Control, and Re-Emergence in Peri-Rural La Joya, Peru
The historically rural problem of Chagas disease is increasing in urban areas in Latin America. Peri-rural development may play a critical role in the urbanization of Chagas disease and other parasitic infections. We conducted a cross-sectional study in an urbanizing rural area in southern Peru, and we encountered a complex history of Chagas disease in this peri-rural environment. Specifically, we discovered: (1) long-standing parasite transmission leading to substantial burden of infection; (2) interruption in parasite transmission resulting from an undocumented insecticide application campaign; (3) relatively rapid re-emergence of parasite-infected vector insects resulting from an unsustained control campaign; (4) extensive migration among peri-rural inhabitants. Long-standing parasite infection in peri-rural areas with highly mobile populations provides a plausible mechanism for the expansion of parasite transmission to nearby urban centers. Lack of commitment to control campaigns in peri-rural areas may have unforeseen and undesired consequences for nearby urban centers. Novel methods and perspectives are needed to address the complexities of human migration and erratic interventions
Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh
This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies
Hierarchical Models in the Brain
This paper describes a general model that subsumes many parametric models for
continuous data. The model comprises hidden layers of state-space or dynamic
causal models, arranged so that the output of one provides input to another. The
ensuing hierarchy furnishes a model for many types of data, of arbitrary
complexity. Special cases range from the general linear model for static data to
generalised convolution models, with system noise, for nonlinear time-series
analysis. Crucially, all of these models can be inverted using exactly the same
scheme, namely, dynamic expectation maximization. This means that a single model
and optimisation scheme can be used to invert a wide range of models. We present
the model and a brief review of its inversion to disclose the relationships
among, apparently, diverse generative models of empirical data. We then show
that this inversion can be formulated as a simple neural network and may provide
a useful metaphor for inference and learning in the brain
Clinical Significance of Myocardial Injury in Patients Hospitalized for COVID-19: A Prospective, Multicenter, Cohort Study
\ua9 2024 The AuthorsBackground: Hospitalized COVID-19 patients with troponin elevation have a higher prevalence of cardiac abnormalities than control individuals. However, the progression and impact of myocardial injury on COVID-19 survivors remain unclear. Objectives: This study sought to evaluate myocardial injury in COVID-19 survivors with troponin elevation with baseline and follow-up imaging and to assess medium-term outcomes. Methods: This was a prospective, longitudinal cohort study in 25 United Kingdom centers (June 2020 to March 2021). Hospitalized COVID-19 patients with myocardial injury underwent cardiac magnetic resonance (CMR) scans within 28 days and 6 months postdischarge. Outcomes were tracked for 12 months, with quality of life surveys (EuroQol-5 Dimension and 36-Item Short Form surveys) taken at discharge and 6 months. Results: Of 342 participants (median age: 61.3 years; 71.1% male) with baseline CMR, 338 had a 12-month follow-up, 235 had a 6-month CMR, and 215 has baseline and follow-up quality of life surveys. Of 338 participants, within 12 months, 1.2% died; 1.8% had new myocardial infarction, acute coronary syndrome, or coronary revascularization; 0.8% had new myopericarditis; and 3.3% had other cardiovascular events requiring hospitalization. At 6 months, there was a minor improvement in left ventricular ejection fraction (1.8% \ub1 1.0%; P < 0.001), stable right ventricular ejection fraction (0.4% \ub1 0.8%; P = 0.50), no change in myocardial scar pattern or volume (P = 0.26), and no imaging evidence of continued myocardial inflammation. All pericardial effusions (26 of 26) resolved, and most pneumonitis resolved (95 of 101). EuroQol-5 Dimension scores indicated an overall improvement in quality of life (P < 0.001). Conclusions: Myocardial injury in severe hospitalized COVID-19 survivors is nonprogressive. Medium-term outcomes show a low incidence of major adverse cardiovascular events and improved quality of life. (COVID-19 Effects on the Heart; ISRCTN58667920
- …