2,491 research outputs found
Revised element abundances for WC-type central stars
According to previous spectral analyses of Wolf-Rayet type central stars,
late [WC] subtypes show systematically higher carbon-to-helium abundance ratios
than early [WC] subtypes. If this were true, it would rule out that these stars
form an evolutionary sequence. However, due to the different parameter domains
and diagnostic lines, one might suspect systematic errors being the source of
this discrepancy. In an ongoing project we are therefore checking the [WC]
analyses by means of the last generation of non-LTE models for expanding
stellar atmospheres which account for line-blanketing and wind clumping. So
far, the abundance discrepancy is not resolved. Further element abundances (H,
N, Fe) are determined and compared with evolutionary predictions.Comment: 4 pages, 5 figures, in conference proceedings of "Planetary Nebulae
in our Galaxy and Beyond" IAU Symposion 234, 2006, editors: Michael J.
Barlow, Roberto H. M\'ende
The metallicity dependence of WR winds
Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the
most massive stars. The strong feedback provided by these objects and their
subsequent supernova (SN) explosions are decisive for a variety of
astrophysical topics such as the cosmic matter cycle. Consequently,
understanding the properties of WR stars and their evolution is indispensable.
A crucial but still not well known quantity determining the evolution of WR
stars is their mass-loss rate. Since the mass loss is predicted to increase
with metallicity, the feedback provided by these objects and their spectral
appearance are expected to be a function of the metal content of their host
galaxy. This has severe implications for the role of massive stars in general
and the exploration of low metallicity environments in particular. Hitherto,
the metallicity dependence of WR star winds was not well studied. In this
contribution, we review the results from our comprehensive spectral analyses of
WR stars in environments of different metallicities, ranging from slightly
super-solar to SMC-like metallicities. Based on these studies, we derived
empirical relations for the dependence of the WN mass-loss rates on the
metallicity and iron abundance, respectively.Comment: 5 pages, 4 figures, to be published in the Proceedings of the IAU
Symposium No. 329 "The lives and death-throes of massive stars
On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars
About a quarter of all post-asymptotic giant branch (AGB) stars are
hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated
H-deficient stars by a (very) late thermal pulse scenario where the
hydrogen-rich envelope is mixed with the helium-rich intershell layer.
Depending on the particular time at which the final flash occurs, the entire
hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars
and their evolution are yet not understood. A small group of very hot,
helium-dominated stars is formed by O(He)-type stars. We performed a detailed
spectral analysis of ultraviolet and optical spectra of four O(He) stars by
means of state-of-the-art non-LTE model-atmosphere techniques. We determined
effective temperatures, surface gravities, and the abundances of H, He, C, N,
O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss
rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss.
The comparison with evolutionary models shows that the status of the O(He)
stars remains uncertain. Their abundances match predictions of a double helium
white dwarf merger scenario, suggesting that they might be the progeny of the
compact and of the luminous helium-rich sdO-type stars. The existence of
planetary nebulae that do not show helium enrichment around every other O(He)
star, precludes a merger origin for these stars. These stars must have formed
in a different way, for instance via enhanced mass-loss during their post-AGB
evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant
or AGB star. A helium-dominated stellar evolutionary sequence exists, that may
be fed by different types of mergers or CE scenarios. It appears likely, that
all these pass through the O(He) phase just before they become white dwarfs.Comment: 29 pages, 27 figures, accepted for publication in A&
Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars
Wolf-Rayet (WR) stars have a severe impact on their environments owing to
their strong ionizing radiation fields and powerful stellar winds. Since these
winds are considered to be driven by radiation pressure, it is theoretically
expected that the degree of the wind mass-loss depends on the initial
metallicity of WR stars. Following our comprehensive studies of WR stars in the
Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates
for all seven putatively single WN stars known in the SMC. Based on these data,
we discuss the impact of a low-metallicity environment on the mass loss and
evolution of WR stars. The quantitative analysis of the WN stars is performed
with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical
properties of our program stars are obtained from fitting synthetic spectra to
multi-band observations. In all SMC WN stars, a considerable surface hydrogen
abundance is detectable. The majority of these objects have stellar
temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to
10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates
and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By
comparing the mass-loss rates derived for WN stars in different Local Group
galaxies, we conclude that a clear dependence of the wind mass-loss on the
initial metallicity is evident, supporting the current paradigm that WR winds
are driven by radiation. A metallicity effect on the evolution of massive stars
is obvious from the HRD positions of the SMC WN stars at high temperatures and
high luminosities. Standard evolution tracks are not able to reproduce these
parameters and the observed surface hydrogen abundances. Homogeneous evolution
might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&
The rapid evolution of the exciting star of the Stingray Nebula
SAO244567, the exciting star of the Stingray nebula, is rapidly evolving.
Previous analyses suggested that it has heated up from an effective temperature
of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic
giant branch evolution suggests a relatively high mass while previous analyses
indicate a low-mass star. Fitting line profiles from static and expanding
non-LTE model atmospheres to the observed UV and optical spectra, taken during
1988-2013, allowed us to study the temporal change of effective temperature,
surface gravity, mass-loss rate, and terminal wind velocity. In addition, we
determined the chemical composition of the atmosphere. We find that the central
star has steadily increased its effective temperature from 38kK in 1988 to a
peak value of 60kK in 2002. During the same time, the star was contracting, as
concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a
drop in luminosity. Simultaneously, the mass-loss rate declined from log
(dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from
1800km/s to 2800km/s. Since around 2002, the star stopped heating and has
cooled down again to 55kK by 2006. It has a largely solar surface composition
with the exception of slightly subsolar carbon, phosphorus, and sulfur. By
comparison with stellar-evolution calculations, we confirm that SAO244567 must
be a low-mass star (M < 0.55 Msun). However, the slow evolution of the
respective stellar evolutionary models is in strong contrast to the observed
fast evolution and the young planetary nebula with a kinematical age of only
about 1000 years. We speculate that the star could be a late He-shell flash
object. Alternatively, it could be the outcome of close-binary evolution. Then
SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the
common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&
Weak magnetic fields in central stars of planetary nebulae?
It is not yet clear whether magnetic fields play an essential role in shaping
planetary nebulae (PNe), or whether stellar rotation alone and/or a close
binary companion can account for the variety of the observed nebular
morphologies. In a quest for empirical evidence verifying or disproving the
role of magnetic fields in shaping PNe, we follow up on previous attempts to
measure the magnetic field in a representative sample of PN central stars. We
obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of
twelve bright central stars of PNe with different morphology, including two
round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets
are Wolf-Rayet type central stars. For the majority of the observed central
stars, we do not find any significant evidence for the existence of surface
magnetic fields. However, our measurements may indicate the presence of weak
mean longitudinal magnetic fields of the order of 100 Gauss in the central star
of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet
type central star of the bipolar nebula Hen2-113 and the weak emission line
central star of the elliptical nebula Hen2-131. A clear detection of a 250 G
mean longitudinal field is achieved for the A-type companion of the central
star of NGC 1514. Some of the central stars show a moderate night-to-night
spectrum variability, which may be the signature of a variable stellar wind
and/or rotational modulation due to magnetic features. We conclude that strong
magnetic fields of the order of kG are not widespread among PNe central stars.
Nevertheless, simple estimates based on a theoretical model of magnetized wind
bubbles suggest that even weak magnetic fields below the current detection
limit of the order of 100 G may well be sufficient to contribute to the shaping
of PNe throughout their evolution.Comment: 16 pages, 11 figures, 3 tables, accepted for publication in A&A;
References updated, minor correction
On X-ray pulsations in beta Cephei-type variables
Beta Cephei-type variables are early B-type stars that are characterized by
oscillations observable in their optical light curves. At least one Beta
Cep-variable also shows periodic variability in X-rays. Here we study the X-ray
light curves in a sample of beta Cep-variables to investigate how common X-ray
pulsations are for this type of stars. We searched the Chandra and XMM-Newton
X-ray archives and selected stars that were observed by these telescopes for at
least three optical pulsational periods. We retrieved and analyzed the X-ray
data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these
objects were studied to test for their variability and periodicity. While there
is a weak indication for X-ray variability in beta Cru, we find no
statistically significant evidence of X-ray pulsations in any of our sample
stars. This might be due either to the insufficient data quality or to the
physical lack of modulations. New, more sensitive observations should settle
this question.Comment: accepted in A&
- …