153 research outputs found
General features of experiments on the dynamics of laser-driven electronāpositron beams
The experimental study of the dynamics of neutral electronāpositron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electronāpositron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electronāpositron beams in a fully laser-driven setup
Enhanced Verbal Statistical Learning in Glossolalia
Glossolalia ("speaking in tongues") is a rhythmic utterance of word-like strings of sounds, regularly occurring in religious mass gatherings or various forms of private religious practices (e.g., prayer and meditation). Although specific verbal learning capacities may characterize glossolalists, empirical evidence is lacking. We administered three statistical learning tasks (artificial grammar, phoneme sequence, and visual-response sequence) to 30 glossolalists and 30 matched control volunteers. In artificial grammar, participants decide whether pseudowords and sentences follow previously acquired implicit rules or not. In sequence learning, they gradually draw out rules from repeating regularities in sequences of speech sounds or motor responses. Results revealed enhanced artificial grammar and phoneme sequence learning performances in glossolalists compared to control volunteers. There were significant positive correlations between daily glossolalia activity and artificial grammar learning. These results indicate that glossolalists exhibit enhanced abilities to extract the statistical regularities of verbal information, which may be related to their unusual language abilities
The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation
There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (>= 1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of epsilon(B) approximate to 10(-3) is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets
Cdc42 Regulates Apical Junction Formation in Human Bronchial Epithelial Cells through PAK4 and Par6B
A systematic screen of Cdc42 targets was carried out in human bronchial epithelial cells. Two kinases, PAK4 and Par6B/aPKC, were identified and are required for maturation of primordial junctions into apical junctions. PAK4 recruitment to primordial junctions is Cdc42-dependent, but maintenance at junctions during maturation is Par6B-dependent
Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF)
A novel signaling cascade controlling actin polymerization in response to extracellular signals regulates filopodia formation and likely also neuronal synapse formation
PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction
PURPOSE: Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging.
METHODS: In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference.
RESULTS: Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2āĀ±ā5.4 % (range 1.5-30.8Ā %) and 3.2āĀ±ā1.7 % (range 0.2-4Ā %), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9āĀ±ā3.4Ā % (range 9.9-23.5Ā %) and for osteolytic spine lesions, 7.2āĀ±ā1.7Ā % (range 4.9-9.3Ā %), respectively.
CONCLUSION: CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging
Ena/VASP proteins have an anti-capping independent function in filopodia formation
Author Posting. Ā© American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 2579-2591, doi:10.1091/mbc.E06-11-0990.Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actinābinding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.This work was supported in
part by National Institutes of Health Grants GM7542201 to D.A.A., GM58801
to F.B.G., and GM62431 to G.G.B. and by Cell Migration Consortium Grants
GM64346 to D.A.A and G.G.B
ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton
ZO-1 binds numerous transmembrane and cytoplasmic proteins and is required for assembly of both adherens and tight junctions, but its role in defining barrier properties of an established tight junction is unknown. We depleted ZO-1 in MDCK cells using siRNA methods and observed specific defects in the barrier for large solutes, even though flux through the small claudin pores was unaffected. This permeability increase was accompanied by morphological alterations and reorganization of apical actin and myosin. The permeability defect, and to a lesser extent morphological changes, could be rescued by reexpression of either full-length ZO-1 or an N-terminal construct containing the PDZ, SH3, and GUK domains. ZO-2 knockdown did not replicate either the permeability or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these functions. Wild-type and knockdown MDCK cells had differing physiological and morphological responses to pharmacologic interventions targeting myosin activity. Use of the ROCK inhibitor Y27632 or myosin inhibitor blebbistatin increased TER in wild-type cells, whereas ZO-1 knockdown monolayers were either unaffected or changed in the opposite direction; paracellular flux and myosin localization were also differentially affected. These studies are the first direct evidence that ZO-1 limits solute permeability in established tight junctions, perhaps by forming a stabilizing link between the barrier and perijunctional actomyosin
- ā¦