593 research outputs found

    A true concurrent model of smart contracts executions

    Full text link
    The development of blockchain technologies has enabled the trustless execution of so-called smart contracts, i.e. programs that regulate the exchange of assets (e.g., cryptocurrency) between users. In a decentralized blockchain, the state of smart contracts is collaboratively maintained by a peer-to-peer network of mutually untrusted nodes, which collect from users a set of transactions (representing the required actions on contracts), and execute them in some order. Once this sequence of transactions is appended to the blockchain, the other nodes validate it, re-executing the transactions in the same order. The serial execution of transactions does not take advantage of the multi-core architecture of modern processors, so contributing to limit the throughput. In this paper we propose a true concurrent model of smart contract execution. Based on this, we show how static analysis of smart contracts can be exploited to parallelize the execution of transactions.Comment: Full version of the paper presented at COORDINATION 202

    On Languages Accepted by P/T Systems Composed of joins

    Full text link
    Recently, some studies linked the computational power of abstract computing systems based on multiset rewriting to models of Petri nets and the computation power of these nets to their topology. In turn, the computational power of these abstract computing devices can be understood by just looking at their topology, that is, information flow. Here we continue this line of research introducing J languages and proving that they can be accepted by place/transition systems whose underlying net is composed only of joins. Moreover, we investigate how J languages relate to other families of formal languages. In particular, we show that every J language can be accepted by a log n space-bounded non-deterministic Turing machine with a one-way read-only input. We also show that every J language has a semilinear Parikh map and that J languages and context-free languages (CFLs) are incomparable

    Capacity Bounded Grammars and Petri Nets

    Full text link
    A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    Towards an Axiomatization of Simple Analog Algorithms

    No full text
    International audienceWe propose a formalization of analog algorithms, extending the framework of abstract state machines to continuous-time models of computation

    Фізико-хімічна геотехнологія

    Get PDF
    Розглянуто принципові засади геотехнологічного видобування різнома- нітних корисних копалин. Викладено питання розкриття та підготовки родовищ за допомогою свердловинної розробки, проаналізовано способи буріння і кріп- лення геотехнологічних свердловин, а такж застосоване обладнання. Розкрито сутність технологічних процесів, які виконуються при диспергуванні гірських порід, розчиненні солей, вилуговуванні металів, підземній виплавці сірки і га- зифікації вугілля, видобуванні в’язкої нафти та сланцьового газу. Навчальний посібник призначений для студентів, які навчаються за спе- ціальністю «Розробка родовищ та видобування корисних копалин», а також для студентів інших спеціальностей гірничих вузів і факультетів та інженерно- технічних працівників підприємств і проектних організацій гірничовидобувних галузей промисловості України

    Minimalist Architecture to Generate Embedded System Web User Interfaces

    Get PDF
    Part 9: Embedded Systems and Petri NetsInternational audienceThis paper presents a new architecture to semi-automatically generate Web user interfaces for Embedded Systems designed using IOPT Petri Net models. The user interfaces can be used to remotely control, monitor and debug embedded systems using a standard Web Browser. The proposed architecture takes advantage of the distributed nature of the Internet to store all static user interface data and software on third-party Web services (the Cloud), and execute the user-interface code on the user’s Web Browser. A simplified protocol is proposed to enable remote control, status-monitoring, debugging and step-by-step execution, minimizing resource consumption on the physical embedded devices, including processing load, memory and communication bandwidth. As the user interface data and code are kept on third-party Web services, these resources can be shared among multiple embedded device units, and the hardware requirements to implement the devices can be simplified, leading to reduced cost solutions. To prevent down-time due to network problems or server failures, a fault-tolerant topology is suggested. The distributed architecture is transparent to end-users, observing just a Web interface for an embedded device on the other side of an Internet URL

    Identification and Biology of Common Caterpillars in U.S. Soybean

    Get PDF
    Soybean is an established crop with a high production value in the United States. The insects that utilize soybean as a food source have changed drastically over the last 20 yr. Much of the extension literature summarizing pest species distribution and abundance is out of date. This article provides profiles for five common soybean caterpillars, including description, life cycle, and injury to plants

    Symmetry structure in discrete models of biochemical systems : natural subsystems and the weak control hierarchy in a new model of computation driven by interactions

    Get PDF
    © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Interaction Computing (IC) is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are (1) to identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this, and (2) to use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in Systems Biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, Krebs cycle, and p53-mdm2 genetic regulation constructed from Systems Biology models have canonically associated algebraic structures { transformation semigroups. These contain permutation groups (local substructures exhibiting symmetry) that correspond to "pools of reversibility". These natural subsystems are related to one another in a hierarchical manner by the notion of "weak control ". We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-abelian groups (SNAGs) are found in biological examples and can be harnessed to realize nitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.Peer reviewe

    Current Distribution and Population Persistence of Five Lepidopteran Pests in U.S. Soybean

    Get PDF
    The distribution of lepidopteran pests in soybean (Glycine max (L.) Merr.) is a current knowledge gap limiting accurate prioritization of Integrated Pest Management (IPM) research. Regional characterizations of lepidopteran distribution in soybean are now more than 25 yr old. The goal of this study was to generate a contemporary assessment of the distribution and population persistence of lepidopteran soybean pests. To understand which species are currently infesting soybean and their persistence, we conducted a survey of soybean entomologists with responsibility for approximately 33.6 million hectares of production in 31 U.S. states. Soybean entomologists were asked questions about presence of lepidopteran pests and their persistence in their state. We focused this survey on five lepidopteran pests: corn earworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae), green cloverworm (Hypena scabra Fabricius) (Lepidoptera: Erebidae), painted lady (Vanessa cardui L.) (Lepidoptera: Nymphalidae), soybean looper (Chrysodeixis includens Walker) (Lepidoptera: Noctuidae), and velvetbean caterpillar (Anticarsia gemmatalis Hübner) (Lepidoptera: Erebidae). Soybean entomologists also provided insight into regionally relevant or sporadic lepidopteran soybean pests. Participants were also questioned about common scouting practices in each state. Results of this survey highlight dissimilar geographic distribution and relative persistence of lepidopteran pests in soybean. Clear differences in occurrence and abundance among species provide important contemporary distributions and persistence estimates. Assessments of scouting practices demonstrate a need to improve IPM adoption in some states. Results of this study and its complementary pest profile (concurrently published in JIPM) provide a contemporary foundation for studies of lepidopteran soybean pests
    corecore