159 research outputs found

    Deficiency of immunity to poliovirus type 3: a lurking danger?

    Get PDF
    Background: Europe was certified to be polio-free in 2002 by the WHO. However, wild polioviruses remain endemic in India, Pakistan, Afghanistan, and Nigeria, occasionally causing polio outbreaks, as in Tajikistan in 2010. Therefore, effective surveillance measures and vaccination campaigns remain important. To determine the poliovirus immune status of a German study population, we retrospectively evaluated the seroprevalence of neutralizing antibodies (NA) to the poliovirus types 1, 2 and 3 (PV1, 2, 3) in serum samples collected from 1,632 patients admitted the University Hospital of Frankfurt am Main, Germany, in 2001, 2005 and 2010. Methods: Testing was done by using a standardized microneutralization assay. Results: Level of immunity to PV1 ranged between 84.2% (95%CI: 80.3-87.5), 90.4% (88.3-92.3) and 87.5% (85.4-88.8) in 2001, 2005 and 2010. For PV2, we found 90.8% (87.5-90.6), 91.3% (89.3-93.1) and 89.8% (88.7-90.9), in the same period. Seroprevalence to PV3 was 76.6% (72.2-80.6), 69.8% (66.6-72.8) and 72.9% (67.8-77.5) in 2001 and 2005 and 2010, respectively. In 2005 and 2010 significant lower levels of immunity to PV3 in comparison to PV1 and 2 were observed. Since 2001, immunity to PV3 is gradually, but not significantly decreasing. Conclusion: Immunity to PV3 is insufficient in our cohort. Due to increasing globalization and worldwide tourism, the danger of polio-outbreaks is not averted - even not in developed countries, such as Germany. Therefore, vaccination remains necessary

    The Oxidation of Aroyl Propionic Acids by Sodium Hypochlorite

    Get PDF
    Author Institution: Department of Chemistry, The College of Wooster, Wooster, Ohi

    Hybrid Material Based on the Lindquist Polyoxometalate [W6O19]2− and the organosulfur donor o-Me2TTF: A Combined Structural and Spectroscopic Study

    No full text
    International audienceThe synthesis, crystal structure and spectroscopic properties of the hybrid radical cation salt containing oxidized o-3,4-dimethyltetrathiafulvalene (o-Me2TTF) and the Lindquist polyoxometalate anion [W6O19]2− are reported. The title salt represents the first time a Lindquist polyoxometalate has been utilized as the counter anion with this unsymmetrical member of the TTF family of derivatives. The salt crystallizes in the triclinic space group P1ÂŻ with a = 7.6211(7) Å, b = 9.5231(9) Å, c = 12.2148(11) Å, α = 105.5870(10)°, ÎČ = 106.8340(10)° and Îł = 95.6950(10)°. Resolution of the solid state structure revealed that the o-Me2TTF radical cations aggregate as isolated face-to-face dimers with intradimer interactions between neighboring sulfur atoms at distances <3.6 Å. Hydrogen bonding was also observed between hydrogen atoms bound to sp 2-hybridized carbon atoms of o-Me2TTF and bridging oxygen atoms of [W6O19]2−. Single crystal IR and Raman spectra were also collected and provide further evidence that the o-Me2TTF donors have been oxidized to their corresponding radical cationic states

    Electron-molecular vibration coupling in (DMtTTF)Br and (o-DMTTF)2[W6O19] salts studied by vibrational spectroscopy

    No full text
    International audienceA novel 1:1 salt encompassing radical cations of DMtTTF (DMtTTF = dimethyltrimethylene-tetrathiafulvalene) and the Br−anion has been synthesized. Close inspection of the salt's solid state structure revealed the presence of quasi-isolated dimers containing DMtTTF radical cations, a specific arrangement whereby the microscopic parameters of DMtTTFradical dot+ might be studied. Analysis of the corresponding single crystal IR and Raman spectra of (DMtTTF)Br allowed us to study the material's electronic and vibrational structure and to evaluate the electron-molecular coupling constants via the isolated dimer model. Additionally, using previously published IR data, analogous calculations were performed on the salt (o-DMTTF)2[W6O19] (o-DMTTF = o-3,4-dimethyltetrathiafulvalene), which also contains well isolated dimers of o-DMTTF radical cations. These calculations revealed that the coupling constants for the unsymmetrical donors studied herein are comparable to those for symmetric TTF derivatives

    Competing Supramolecular Forces: Boron Coordination vs π-π Stacking

    Get PDF
    This study explores the impact of fluorination levels in azopyridine Lewis bases on their ability to direct the formation of B←N coordination adducts or cocrystals with phenylboronic ester. We hypothesize that the degree of fluorination can be used as a tool to control the outcome of supramolecular bonding competition, thus influencing complex self-assembly. A series of azopyridines with varying degrees of fluorination were synthesized and reacted with phenylboronic ester. Their structures were analyzed using Hartree-Fock calculations, Hirshfeld surface analyses, and single crystal X-ray diffraction to assess the impact of fluorination on supramolecular interactions. The study reveals that azopyridines with up to two fluorine atoms form B←N coordination complexes, while perfluorinated azopyridine leads to cocrystal formation through π-stacking interactions. The outcome depends on the electronic properties of the pyridyl nitrogens, influenced by the level of fluorination. Fluorination in azopyridine Lewis bases serves as an effective strategy to modulate supramolecular bonding competition between boron coordination and π-stacking. This approach enables the selective formation of desired supramolecular structures, highlighting the utility of fluorination in guiding the self-assembly process. The findings have implications for the development of functional materials and 2D devices, offering a novel method for controlling the architecture of supramolecular assemblies

    Confinement and Separation of Benzene from an Azeotropic Mixture Using a Chlorinated B←N Adduct

    Get PDF
    Separations of azeotropic mixtures are typically carried out using energy-demanding processes (e.g., distillation). Here, we report the capacity of a self-assembled chlorinated boronic ester-based adduct to confine acetonitrile and benzene in channels upon crystallization. The solvent confinement occurs via a combination of hydrogen bonding and [π···π] interactions. Quantitative separation of benzene from an azeotropic 1:1 mixture of a benzene/acetonitrile (v/v), and methanol is achieved through crystallization with the chlorinated adduct by complementary [C–H···O] and [C–H···π] interactions. Inclusion behavior is rationalized by molecular modeling and crystallographic analysis. The chlorinated boronic ester adduct shows the potential of modularity via isosteric substitution for the separation of challenging chemical mixtures (e.g., azeotropes)

    Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and FT-rheology experiments

    Full text link
    Using a combination of theory, experiment and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the non linearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory (LAOS) experiments (with FT-rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disc mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in excellent agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves and large amplitude oscillatory spectroscopy

    Draft genome sequence of Lactobacillus fermentum Lf2, an exopolysaccharide-producing strain isolated from Argentine cheese

    Get PDF
    Lactobacillus fermentum Lf2, an Argentine cheese isolate, can produce high concentrations of exopolysaccharides (EPS). These EPS were shown to improve the texture and rheology of yogurt, as well as to play a protective role in mice exposed to Salmonella enterica serovar Typhimurium. Three gene clusters potentially involved in EPS production were identified in different locations of the L. fermentum Lf2 genome

    Order-disorder phase transition induced by proton transfer in a co-crystal of 2,4-dichlorobenzoic acid and trimethylamine N-oxide

    Get PDF
    The crystalline binary adduct between the trimethylamine N-oxide (TMANO) and 2,4-dichlorobenzoic acid (2,4-DCBA) molecules was obtained by slow evaporation from acetonitrile. The obtained molecular complex is formed by a racemic mixture of molecular complexes crystallizing in the orthorhombic space group Pbca. An exhaustive analysis of the temperature dependence of the cell parameters and the behavior of the acidic hydrogen position and carboxilate group were studied by single crystal and powder X-ray diffraction, FT-IR spectroscopy and theoretical calculations. The molecular system was thermally characterized, subsequently demonstrating a order-disorder transition. Finally, the intermolecular interactions were analyzed via Hirshfeld surface analysis

    Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields

    Get PDF
    Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reductionuponcupriphicationofcyclic trinucleartrigonal-planargold(I) complexes are found to sensitize ground-state Cu(I)–Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(ÎŒ-C2,N3-EtIm)4Cu2(ÎŒ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(ÎŒ-C2,N3-BzIm)2Cu(ÎŒ-3,5-(CF3)2Pz)], (1) and [Au2(ÎŒ-C2, N3-MeIm)2Cu(ÎŒ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(ÎŒ-C2,N3-MeIm)Cu2(ÎŒ3,5-(CF3)2Pz)2], (3b) and [Au(ÎŒ-C2,N3-EtIm)Cu2(ÎŒ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(ÎŒ-C2,N3-BzIm)]3[Cu(ÎŒ-3,5-(CF3)2Pz)]3, (2)} formuponreactingAu3 {[Au(ÎŒ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R =benzyl/methyl/ethyl =BzIm/MeIm/EtIm)} with Cu3 {[Cu(ÎŒ-3,5(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via twoAu(I)⋯Cu(I)metallophilicinteractions,whereas 4a exhibitsa hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10–d10 polar-covalent bond with ligandunassisted Cu(I)–Au(I) distances of 2.8750(8) Å each—the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a “metal–metal bond” vis-Ă -vis “metallophilic interaction.” Density-functional calculations estimate 35– 43kcal/molbindingenergy,akintotypicalM–Msingle-bondenergies. Congruently, FTIR spectra of4a showmultiple far-IR bands within 65– 200 cm−1, assignable to vCu-Au as validated by both the Harvey–Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilicsensitizationinextinctioncoefficientandsolid-state photoluminescence quantum yields approaching unity (ΊPL = 0.90–0.97 vs. 0–0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications
    • 

    corecore