217 research outputs found

    Update on a Continuing Saga: Eelgrass and Green Crabs in Casco Bay, Maine (Poster)

    Get PDF
    https://digitalcommons.usm.maine.edu/cbep-graphics-maps-posters/1035/thumbnail.jp

    In silico discovery of blood cell macromolecular associations

    Get PDF
    Background Physical molecular interactions are the basis of intracellular signalling and gene regulatory networks, and comprehensive, accessible databases are needed for their discovery. Highly correlated transcripts may reflect important functional associations, but identification of such associations from primary data are cumbersome. We have constructed and adapted a user-friendly web application to discover and identify putative macromolecular associations in human peripheral blood based on significant correlations at the transcriptional level. Methods The blood transcriptome was characterized by quantification of 17,328 RNA species, including 341 mature microRNAs in 105 clinically well-characterized postmenopausal women. Intercorrelation of detected transcripts signal levels generated a matrix with > 150 million correlations recognizing the human blood RNA interactome. The correlations with calculated adjusted p-values were made easily accessible by a novel web application. Results We found that significant transcript correlations within the giant matrix reflect experimentally documented interactions involving select ubiquitous blood relevant transcription factors (CREB1, GATA1, and the glucocorticoid receptor (GR, NR3C1)). Their responsive genes recapitulated up to 91% of these as significant correlations, and were replicated in an independent cohort of 1204 individual blood samples from the Framingham Heart Study. Furthermore, experimentally documented mRNAs/miRNA associations were also reproduced in the matrix, and their predicted functional co-expression described. The blood transcript web application is available at http://app.uio.no/med/klinmed/correlation-browser/blood/index.php and works on all commonly used internet browsers. Conclusions Using in silico analyses and a novel web application, we found that correlated blood transcripts across 105 postmenopausal women reflected experimentally proven molecular associations. Furthermore, the associations were reproduced in a much larger and more heterogeneous cohort and should therefore be generally representative. The web application lends itself to be a useful hypothesis generating tool for identification of regulatory mechanisms in complex biological data sets.publishedVersio

    Bone mineral density and the risk of incident dementia:A meta-analysis

    Get PDF
    Background: It is not known whether bone mineral density (BMD) measured at baseline or as the rate of decline prior to baseline (prior bone loss) is a stronger predictor of incident dementia or Alzheimer's disease (AD). Methods:We performed a meta-analysis of three longitudinal studies, the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Rush Memory and Aging Project (MAP), modeling the time to diagnosis of dementia as a function of BMD measures accounting for covariates. We included individuals with one or two BMD assessments, aged ≥60 years, and free of dementia at baseline with follow-up available. BMD was measured at the hip femoral neck using dual-energy X-ray absorptiometry (DXA), or at the heel calcaneus using quantitative ultrasound to calculate estimated BMD (eBMD). BMD at study baseline (“baseline BMD”) and annualized percentage change in BMD prior to baseline (“prior bone loss”) were included as continuous measures. The primary outcome was incident dementia diagnosis within 10 years of baseline, and incident AD was a secondary outcome. Baseline covariates included age, sex, body mass index, ApoE4 genotype, and education. Results: The combined sample size across all three studies was 4431 with 606 incident dementia diagnoses, 498 of which were AD. A meta-analysis of baseline BMD across three studies showed higher BMD to have a significant protective association with incident dementia with a hazard ratio of 0.47 (95% CI: 0.23–0.96; p = 0.038) per increase in g/cm2, or 0.91 (95% CI: 0.84–0.995) per standard deviation increase. We observed a significant association between prior bone loss and incident dementia with a hazard ratio of 1.30 (95% CI: 1.12–1.51; p &lt; 0.001) per percent increase in prior bone loss only in the FHS cohort. Conclusions: Baseline BMD but not prior bone loss was associated with incident dementia in a meta-analysis across three studies.</p

    Community oncologists\u27 perceptions and utilization of large-panel genomic tumor testing.

    Get PDF
    PURPOSE: Large-panel genomic tumor testing (GTT) is an emerging technology with great promise but uncertain clinical value. Previous research has documented variability in academic oncologists\u27 perceptions and use of GTT, but little is known about community oncologists\u27 perceptions of GTT and how perceptions relate to clinicians\u27 intentions to use GTT. METHODS: Community oncology physicians (N = 58) participating in a statewide initiative aimed at improving access to large-panel GTT completed surveys assessing their confidence in using GTT, attitudes regarding the value of GTT, perceptions of barriers to GTT implementation, and future intentions to use GTTs. Descriptive and multivariable regression analyses were conducted to characterize these perceptions and to explore the relationships between them. RESULTS: There was substantial variability in clinicians\u27 perceptions of GTT. Clinicians generally had moderate confidence in their ability to use GTT, but lower confidence in patients\u27 ability to understand test results and access targeted treatment. Clinicians had positive attitudes regarding the value of GTT. Clinicians\u27 future intentions to use GTT were associated with greater confidence in using GTT and greater perceived barriers to implementing GTT, but not with attitudes about the value of GTT. CONCLUSIONS: Community oncologists\u27 perceptions of large-panel genomic tumor testing are variable, and their future intentions to use GTT are associated with both their confidence in and perceived barriers to its use, but not with their attitudes towards GTT. More research is needed to understand other factors that determine how oncologists perceive and use GTT in clinical practice

    Chiang Kai-shek’s “secret deal” at Xian and the start of the Sino-Japanese War

    Get PDF
    Using newly available archives, particularly the diary and the presidential papers of Chiang Kai-shek, this article challenges the conventional interpretations of the Xian Incident (1936), in particular the widely held belief that the kidnapping of China’s leader Chiang by two rebellious generals forced him to form a united front with the Communist Party to confront Japanese aggression, and of the outbreak of the Sino-Japanese War 7 months later. It puts forth the interpretation that full-scale war between China and Japan was started not by Japan but by Chiang after a Japanese provocation, and the united front was only formed after Chiang ordered his best army units to attack Japanese forces in Shanghai in August 1937 turning it into the largest land battle after the First World War. It must be noted, however, that Japan acted provocatively and aggressively in a local incident outside Beijing a month earlier. Chiang decided on war not because he reached an agreement with the Chinese Communists to form a united front whilst a captive in Xian but because in Xian he received a signal from Josef Stalin that the Soviet Union would support him in a war with Japan. Chiang read Stalin right and the Soviet Union became the largest supplier of weapons to China in the first 4 years of China’s 8-year war with Japan. The hitherto unknown or “secret deal” Chiang made in Xian was an implicit one with Stalin, not with the Chinese Communist Party or its man on the spot Zhou Enlai

    Ultrafast carrier relaxation and vertical-transport phenomena in semiconductor superlattices: A Monte Carlo analysis

    Get PDF
    The ultrafast dynamics of photoexcited carriers in semiconductor superlattices is studied theoretically on the basis of a Monte Carlo solution of the coupled Boltzmann transport equations for electrons and holes. The approach allows a kinetic description of the relevant interaction mechanisms such as intra- miniband and interminiband carrier-phonon scattering processes. The energy relaxation of photoexcited carriers, as well as their vertical transport, is investigated in detail. The effects of the multiminiband nature of the superlattice spectrum on the energy relaxation process are discussed with particular emphasis on the presence of Bloch oscillations induced by an external electric field. The analysis is performed for different superlattice structures and excitation conditions. It shows the dominant role of carrier-polar-optical-phonon interaction in determining the nature of the carrier dynamics in the low-density limit. In particular, the miniband width, compared to the phonon energy, turns out to be a relevant quantity in predicting the existence of Bloch oscillations
    corecore