132 research outputs found
A new approach to quantum backflow
We derive some rigorous results concerning the backflow operator introduced
by Bracken and Melloy. We show that it is linear bounded, self adjoint, and not
compact. Thus the question is underlined whether the backflow constant is an
eigenvalue of the backflow operator. From the position representation of the
backflow operator we obtain a more efficient method to determine the backflow
constant. Finally, detailed position probability flow properties of a numerical
approximation to the (perhaps improper) wave function of maximal backflow are
displayed.Comment: 12 pages, 8 figure
Polynary Silicon Arsenic Chalcogenide Glasses With High Softening Temperatures
The introduction of Ag in SiAsTe glasses permits the incorporation of Se, otherwise volatile and/or degradable as a constituent in Si-containing chalcogenide glasses. SiAsAgTeSe glasses exhibit much higher softening ranges and glass transition temperatures than encountered in known chalgogenide systems. A glass Si35As15Ag10Te20Se20 had the viscosity log ν = 13 at about 500°C, as compared to 370°C for the base glass Si35As25Te40, the viscosity of log ν = 9.8 at about 560°C, as compared to 442°C for the base glass. Phase separation occurs in the system SiAsAgTeSe and becomes manifest in two glass transitions indicated by changes in the slopes of the expansion curves and breaks in the softening point-composition relations. The existence and behavior SiAsAgTeSe glasses suggests the possible development of higher Tg i.r. transparencies and higher Tg semiconductor glasses than described so far. © 1973
MOST observations of the roAp stars HD 9289, HD 99563, and HD 134214
We report on the analysis of high-precision space-based photometry of the
roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three
stars were observed by the MOST satellite for more than 25 days, allowing
unprecedented views of their pulsation. We find previously unknown candidate
frequencies in all three stars. We establish the rotation period of HD 9289
(8.5 d) for the first time and show that the star is pulsating in two modes
that show different mode geometries. We present a detailed analysis of HD
99563's mode multiplet and find a new candidate frequency which appears
independent of the previously known mode. Finally, we report on 11 detected
pulsation frequencies in HD 134214, 9 of which were never before detected in
photometry, and 3 of which are completely new detections. Thanks to the
unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214
can be seen to have a well-defined large frequency spacing similar to the
well-studied roAp star HD 24712 (HR 1217).Comment: 11 pages, 12 figures, accepted for publication in A&
Clouds above the Martin Limb: Viking observations
Whenever Viking Orbiter images included the limb of Mars, they recorded one or more layers of clouds above the limb. The height above the limb and the brightness (reflectivity) of these clouds were determined in a selected group of these images. Normalized individual brightness profiles of three separate traverses across the limb of each image are shown. The most notable finding is that some of these clouds can be very high. Many reach heights of over 60 km, and several are over 70 km above the limb. Statistically, the reflectivity of the clouds increases with phase angle. Reflectivity and height both appear to vary with season, but the selected images spanned only one Martian year, so the role of seasons cannot be isolated. Limb clouds in red-filter images tend to be brighter than violet-filter images, but both season and phase appear to be more dominant factors. Due to the limited sample available, the possible influences of latitude and longitude are less clear. The layering of these clouds ranges from a single layer to five or more layers. Reflectivity gradients range from smooth and gentle to steep and irregular
Bohmian arrival time without trajectories
The computation of detection probabilities and arrival time distributions
within Bohmian mechanics in general needs the explicit knowledge of a relevant
sample of trajectories. Here it is shown how for one-dimensional systems and
rigid inertial detectors these quantities can be computed without calculating
any trajectories. An expression in terms of the wave function and its spatial
derivative, both restricted to the boundary of the detector's spacetime volume,
is derived for the general case, where the probability current at the
detector's boundary may vary its sign.Comment: 20 pages, 12 figures; v2: reference added, extended introduction,
published versio
New measurements of magnetic fields of roAp stars with FORS1 at the VLT
Magnetic fields play a key role in the pulsations of rapidly oscillating Ap
(roAp) stars since they are a necessary ingredient of all pulsation excitation
mechanisms proposed so far. This implies that the proper understanding of the
seismological behaviour of the roAp stars requires knowledge of their magnetic
fields. However, the magnetic fields of the roAp stars are not well studied.
Here we present new results of measurements of the mean longitudinal field of
14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the
VLT.Comment: 5 pages, accepted for publication in A&
A photometric and spectroscopic study of the cataclysmic variable SX Leonis Minoris in quiescence and superoutburst
We present CCD imaging, CCD photometry on long and short timescales, and time-resolved spectroscopy of SX LMi, a new SU Ursae Majoris type dwarf nova. The quiescent optical spectrum shows broad double-peaked Balmer, He I, and He II emission lines, similar to other quiescent dwarf novae. Absorption lines from a late-type secondary are not detected. Time-resolved spectra obtained in quiescence reveal radial velocity variations of the Balmer emission lines on a period of 0.06717 +/- 0.00011 days, or 96.72 +/- 0.16 minutes, with only a slight possibility of a daily cycle-count error. Optical photometry obtained between 1987 and 1991 shows flickering with a peak-to-peak amplitude of 0.18 mag. The binary orbital period can sometimes be seen in the photometric record. Long-term photometric monitoring for a three-year period between 1992 October and 1995 June shows seven well-defined outbursts and marginally detects a few others. The outburst interval varies between 34 and 64 days. During the 1994 December outburst, optical photometric observations show that SX LMi exhibited superhumps with a period of 0.06893 +/- 0.00012 days, which is 2.6 percent +/- 0.2 percent longer than the orbital period, as expected for a normal SU UMa star at this period. Spectra obtained during superoutburst show dramatic variations in the emission-line profiles on timescales of 10 minutes. Profile fits indicate that underlying absorption contributes to the shape of the
Balmer emission-line profiles during superoutburst as in other dwarf novae in outburst or superoutburst.
Direct images in good seeing show a ~D19 mag companion star from SX LMi
The size, shape, density, and albedo of Ceres from its occultation of BD+8 deg 471
The occultation of BD+8 degrees 471 by Ceres on 13 November 1984 was observed photoelectrically at 13 sites in Mexico, Florida, and the Caribbean. These observations indicate that Ceres is an oblate spheroid having an equatorial radius of 479.6 + or - 2.4 km and a polar radius of 453.4 + or - 4.5 km. The mean density of this minor planet is 2.7 gm/cubic cm + or - 5%, and its visual geometric albedo is 0.070. While the surface appears globally to be in hydrostatic equilibrium, firm evidence of real limb irregularities is seen in the data
The Nainital-Cape Survey -- II:Report for pulsation in five chemically peculiar A-type stars and presentation of 140 null results
To search photometric variability in chemically peculiar A type stars in the
northern hemisphere. High-speed photometric observations of Ap and Am star
candidates have been carried out from ARIES (Manora Peak, Nainital) using a
three-channel fast photometer attached to the ARIES 104-cm Sampurnanand
telescope. This paper presents three new variables: HD 113878, HD 118660 and HD
207561. During the time span of the survey (1999 December to 2004 January)
pulsations of the Sct type were also found for the two evolved Am
stars HD 102480 and HD 98851, as reported in Joshi et al. (2002, 2003).
Additionally, we present 140 null results of the survey for this time span. The
star HD 113878 pulsates with a period of 2.31 hr, which is typical of
Sct stars. HD 118660 exhibits multi-periodic variability with a prominent
period of nearly 1 hr. These periods need to be investigated and make HD 118660
a particularly interesting target for further observations. For HD 207561, a
star classified as Am, a probable pulsation with a period of 6 min was found in
the light curves obtained on two consecutive nights. Both HD 102480 and HD
98851 exhibit unusual alternating high and low amplitude maxima, with a period
ratio of 2:1. The analysis of the null results confirms the photometric quality
of the NainitalComment: 14 pages, 13 figures, Accepted for publication in A&
The first evidence for multiple pulsation axes: a new roAp star in the Kepler field, KIC 10195926
We have discovered a new rapidly oscillating Ap star among the Kepler Mission
target stars, KIC 10195926. This star shows two pulsation modes with periods
that are amongst the longest known for roAp stars at 17.1 min and 18.1 min,
indicating that the star is near the terminal age main sequence. The principal
pulsation mode is an oblique dipole mode that shows a rotationally split
frequency septuplet that provides information on the geometry of the mode. The
secondary mode also appears to be a dipole mode with a rotationally split
triplet, but we are able to show within the improved oblique pulsator model
that these two modes cannot have the same axis of pulsation. This is the first
time for any pulsating star that evidence has been found for separate pulsation
axes for different modes. The two modes are separated in frequency by 55
microHz, which we model as the large separation. The star is an alpha^2 CVn
spotted magnetic variable that shows a complex rotational light variation with
a period of Prot = 5.68459 d. For the first time for any spotted magnetic star
of the upper main sequence, we find clear evidence of light variation with a
period of twice the rotation period; i.e. a subharmonic frequency of . We propose that this and other subharmonics are the first observed
manifestation of torsional modes in an roAp star. From high resolution spectra
we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a
magnetic pulsation model with fundamental parameters close to these values that
reproduces the rotational variations of the two obliquely pulsating modes with
different pulsation axes. The star shows overabundances of the rare earth
elements, but these are not as extreme as most other roAp stars. The spectrum
is variable with rotation, indicating surface abundance patches.Comment: 17 pages; 16 figures; MNRA
- …