93 research outputs found

    CVaR minimization by the SRA algorithm

    Get PDF
    Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR

    Processing second-order stochastic dominance models using cutting-plane representations

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).This study was funded by OTKA, Hungarian National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)

    Semigroup Closures of Finite Rank Symmetric Inverse Semigroups

    Full text link
    We introduce the notion of semigroup with a tight ideal series and investigate their closures in semitopological semigroups, particularly inverse semigroups with continuous inversion. As a corollary we show that the symmetric inverse semigroup of finite transformations Iλn\mathscr{I}_\lambda^n of the rank n\leqslant n is algebraically closed in the class of (semi)topological inverse semigroups with continuous inversion. We also derive related results about the nonexistence of (partial) compactifications of classes of semigroups that we consider.Comment: With the participation of the new coauthor - Jimmie Lawson - the manuscript has been substantially revised and expanded. Accordingly, we have also changed the manuscript titl

    A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem

    Get PDF
    We obtain a quasi-metric generalization of Caristi's fixed point theorem for a kind of complete quasi-metric spaces. With the help of a suitable modification of its proof, we deduce a characterization of Smyth complete quasi-metric spaces which provides a quasi-metric generalization of the well-known characterization of metric completeness due to Kirk. Some illustrative examples are also given. As an application, we deduce a procedure which allows to easily show the existence of solution for the recurrence equation of certain algorithms.The authors are grateful to the reviewers for several suggestions which have allowed to improve the first version of the paper. This research is supported by the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01.Romaguera Bonilla, S.; Tirado Peláez, P. (2015). A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem. Fixed Point Theory and Applications. 2015:183. https://doi.org/10.1186/s13663-015-0431-1S2015:183Cobzaş, S: Functional Analysis in Asymmetric Normed Spaces. Springer, Basel (2013)Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968. Kluwer Academic, Dordrecht (2001)Reilly, IL, Subrhamanyam, PV, Vamanamurthy, MK: Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte Math. 93, 127-140 (1982)Künzi, HPA, Schellekens, MP: On the Yoneda completion of a quasi-metric spaces. Theor. Comput. Sci. 278, 159-194 (2002)Romaguera, S, Valero, O: Domain theoretic characterisations of quasi-metric completeness in terms of formal balls. Math. Struct. Comput. Sci. 20, 453-472 (2010)Künzi, HPA: Nonsymmetric topology. In: Proc. Szekszárd Conf. Bolyai Society of Math. Studies, vol. 4, pp. 303-338 (1993)García-Raffi, LM, Romaguera, S, Schellekens, MP: Applications of the complexity space to the general probabilistic divide and conquer algorithms. J. Math. Anal. Appl. 348, 346-355 (2008)Stoltenberg, RA: Some properties of quasi-uniform spaces. Proc. Lond. Math. Soc. 17, 226-240 (1967)Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)Kirk, WA: Caristi’s fixed point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976)Abdeljawad, T, Karapınar, E: Quasi-cone metric spaces and generalizations of Caristi Kirk’s theorem. Fixed Point Theory Appl. 2009, Article ID 574387 (2009)Acar, O, Altun, I: Some generalizations of Caristi type fixed point theorem on partial metric spaces. Filomat 26(4), 833-837 (2012)Acar, O, Altun, I, Romaguera, S: Caristi’s type mappings on complete partial metric spaces. Fixed Point Theory 14, 3-10 (2013)Aydi, H, Karapınar, E, Kumam, P: A note on ‘Modified proof of Caristi’s fixed point theorem on partial metric spaces, Journal of Inequalities and Applications 2013, 2013:210’. J. Inequal. Appl. 2013, 355 (2013)Cobzaş, S: Completeness in quasi-metric spaces and Ekeland variational principle. Topol. Appl. 158, 1073-1084 (2011)Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001)Karapınar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011, 4 (2011)Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010, Article ID 493298 (2010)Park, S: On generalizations of the Ekeland-type variational principles. Nonlinear Anal. TMA 39, 881-889 (2000)Du, W-S, Karapınar, E: A note on Caristi type cyclic maps: related results and applications. Fixed Point Theory Appl. 2013, 344 (2013)Ali-Akbari, M, Honari, B, Pourmahdian, M, Rezaii, MM: The space of formal balls and models of quasi-metric spaces. Math. Struct. Comput. Sci. 19, 337-355 (2009)Romaguera, S, Schellekens, M: Quasi-metric properties of complexity spaces. Topol. Appl. 98, 311-322 (1999)Brøndsted, A: On a lemma of Bishop and Phelps. Pac. J. Math. 55, 335-341 (1974)Brøndsted, A: Fixed points and partial order. Proc. Am. Math. Soc. 60, 365-366 (1976)Smyth, MB: Quasi-uniformities: reconciling domains with metric spaces. In: Main, M, Melton, A, Mislove, M, Schmidt, D (eds.) Mathematical Foundations of Programming Language Semantics, 3rd Workshop, Tulane, 1987. Lecture Notes in Computer Science, vol. 298, pp. 236-253. Springer, Berlin (1988)Cull, P, Flahive, M, Robson, R: Difference Equations: From Rabbits to Chaos. Springer, New York (2005)Schellekens, M: The Smyth completion: a common foundation for denotational semantics and complexity analysis. Electron. Notes Theor. Comput. Sci. 1, 535-556 (1995)García-Raffi, LM, Romaguera, S, Sánchez-Pérez, EA: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 49, 1852-1868 (2009)Rodríguez-López, J, Schellekens, MP, Valero, O: An extension of the dual complexity space and an application to computer science. Topol. Appl. 156, 3052-3061 (2009)Romaguera, S, Schellekens, MP, Valero, O: The complexity space of partial functions: a connection between complexity analysis and denotational semantics. Int. J. Comput. Math. 88, 1819-1829 (2011

    A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Get PDF
    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally-relevant functionalized tertiary beta-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed

    On realcompact topological vector spaces

    Get PDF
    [EN] This survey paper collects some of older and quite new concepts and results from descriptive set topology applied to study certain infinite-dimensional topological vector spaces appearing in Functional Analysis, including Frechet spaces, (L F)-spaces, and their duals, (D F)-spaces and spaces of continuous real-valued functions C(X) on a completely regular Hausdorff space X. Especially (L F)-spaces and their duals arise in many fields of Functional Analysis and its applications, for example in Distributions Theory, Differential Equations and Complex Analysis. The concept of a realcompact topological space, although originally introduced and studied in General Topology, has been also studied because of very concrete applications in Linear Functional Analysis.The research for the first named author was (partially) supported by Ministry of Science and Higher Education, Poland, Grant no. NN201 2740 33 and for the both authors by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation.Kakol, JM.; López Pellicer, M. (2011). On realcompact topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 105(1):39-70. https://doi.org/10.1007/s13398-011-0003-0S39701051Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23(2), 395–446 (1993). doi: 10.1216/rmjm/1181072569Arkhangel’skii, A. V.: Topological Function Spaces, Mathematics and its Applications, vol. 78, Kluwer, Dordrecht (1992)Batt J., Hiermeyer W.: On compactness in L p (μ, X) in the weak topology and in the topology σ(L p (μ, X), L p (μ,X′)). Math. Z. 182, 409–423 (1983)Baumgartner J.E., van Douwen E.K.: Strong realcompactness and weakly measurable cardinals. Topol. Appl. 35, 239–251 (1990). doi: 10.1016/0166-8641(90)90109-FBierstedt K.D., Bonet J.: Stefan Heinrich’s density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 35, 149–180 (1988)Cascales B.: On K-analytic locally convex spaces. Arch. Math. 49, 232–244 (1987)Cascales B., Ka̧kol J., Saxon S.A.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269, 500–518 (2002). doi: 10.1016/S0022-247X(02)00032-XCascales B., Ka̧kol J., Saxon S.A.: Metrizability vs. Fréchet–Urysohn property. Proc. Am. Math. Soc. 131, 3623–3631 (2003)Cascales B., Namioka I., Orihuela J.: The Lindelöf property in Banach spaces. Stud. Math. 154, 165–192 (2003). doi: 10.4064/sm154-2-4Cascales B., Oncina L.: Compactoid filters and USCO maps. J. Math. Anal. Appl. 282, 826–843 (2003). doi: 10.1016/S0022-247X(03)00280-4Cascales B., Orihuela J.: On compactness in locally convex spaces, Math. Z. 195(3), 365–381 (1987). doi: 10.1007/BF01161762Cascales B., Orihuela J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. Ser. B 40(2), 331–352 (1988) Journal continued as Bull. Belg. Math. Soc. Simon StevinDiestel J.: LX1{L^{1}_{X}} is weakly compactly generated if X is. Proc. Am. Math. Soc. 48(2), 508–510 (1975). doi: 10.2307/2040292van Douwen E.K.: Prime mappings, number of factors and binary operations. Dissertationes Math. (Rozprawy Mat.) 199, 35 (1981)Drewnowski L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335(2), 1177–1195 (2007). doi: 10.1016/j.jmaa.2007.02.032Engelking R.: General Topology. Heldermann Verlag, Lemgo (1989)Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Canadian Mathematical Society. Springer, Berlin (2001)Ferrando J.C.: A weakly analytic space which is not K-analytic. Bull. Aust. Math. Soc. 79(1), 31–35 (2009). doi: 10.1017/S0004972708000968Ferrando J.C.: Some characterization for υ X to be Lindelöf Σ or K-analytic in term of C p (X). Topol. Appl. 156(4), 823–830 (2009). doi: 10.1016/j.topol.2008.10.016Ferrando J.C., Ka̧kol J.: A note on spaces C p (X) K-analytic-framed in RX{\mathbb{R}^{X} } . Bull. Aust. Math. Soc. 78, 141–146 (2008)Ferrando J.C., Ka̧kol J., López-Pellicer M.: Bounded tightness conditions and spaces C(X). J. Math. Anal. Appl. 297, 518–526 (2004)Ferrando J.C., Ka̧kol J., López-Pellicer M.: A characterization of trans-separable spaces. Bull. Belg. Math. Soc. Simon Stevin 14, 493–498 (2007)Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: Metrizability of precompact sets: an elementary proof. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 99(2), 135–142 (2005). http://www.rac.es/ficheros/doc/00173.pdfFerrando J.C., Ka̧kol J., López-Pellicer M., Saxon S.A.: Tightness and distinguished Fréchet spaces. J. Math. Anal. Appl. 324, 862–881 (2006). doi: 10.1016/j.jmaa.2005.12.059Ferrando J.C., Ka̧kol J., López-Pellicer M., Saxon S.A.: Quasi-Suslin weak duals. J. Math. Anal. Appl. 339(2), 1253–1263 (2008). doi: 10.1016/j.jmaa.2007.07.081Floret, K.: Weakly compact sets. Lecture Notes in Mathematics, vol. 801, Springer, Berlin (1980)Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principial. Trans. Am. Math. Soc. 82, 366–391 (1956). doi: 10.2307/1993054Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand Reinhold Company, New York (1960)Grothendieck A.: Sur les applications linéaires faiblement compactes d’espaces du type C(K). Can. J. Math. 5, 129–173 (1953)Gullick D., Schmets J.: Separability and semi-norm separability for spaces of bounded continuous functions. Bull. R. Sci. Lige 41, 254–260 (1972)Hager A.W.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517–546 (1974). doi: 10.1112/plms/s3-28.3.517Howes N.R.: On completeness. Pacific J. Math. 38, 431–440 (1971)Isbell, J.R.: Uniform spaces. In: Mathematical Surveys 12, American Mathematical Society, Providence (1964)Ka̧kol J., López-Pellicer M.: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332, 965–974 (2007). doi: 10.1016/j.jmaa.2006.10.045Ka̧kol, J., López-Pellicer, M.: A characterization of Lindelöf Σ-spaces υ X (preprint)Ka̧kol J., López-Pellicer M., Śliwa W.: Weakly K-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362(1), 90–99 (2010). doi: 10.1016/j.jmaa.2009.09.026Ka̧kol J., Saxon S.: Montel (DF)-spaces, sequential (LM)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66(2), 388–406 (2002)Ka̧kol J., Saxon S., Todd A.T.: Pseudocompact spaces X and df-spaces C c (X). Proc. Am. Math. Soc. 132, 1703–1712 (2004)Ka̧kol J., Śliwa W.: Strongly Hewitt spaces. Topology Appl. 119(2), 219–227 (2002). doi: 10.1016/S0166-8641(01)00063-3Khan L.A.: Trans-separability in spaces of continuous vector-valued functions. Demonstr. Math. 37, 61–67 (2004)Khan L.A.: Trans-separability in the strict and compact-open topologies. Bull. Korean Math. Soc. 45, 681–687 (2008). doi: 10.4134/BKMS.2008.45.4.681Khurana S.S.: Weakly compactly generated Fréchet spaces. Int. J. Math. Math. Sci. 2(4), 721–724 (1979). doi: 10.1155/S0161171279000557Kirk R.B.: A note on the Mackey topology for (C b (X)*,C b (X)). Pacific J. Math. 45(2), 543–554 (1973)Köthe G.: Topological Vector Spaces I. Springer, Berlin (1969)Kubiś W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf Σ-spaces. Topol. Appl. 153(14), 2574–2590 (2006). doi: 10.1016/j.topol.2005.09.009Künzi H.P.A., Mršević M., Reilly I.L., Vamanamurthy M.K.: Pre-Lindelöf quasi-pseudo-metric and quasi-uniform spaces. Mat. Vesnik 46, 81–87 (1994)Megginson R.: An Introduction to Banach Space Theory. Springer, Berlin (1988)Michael E.: ℵ0-spaces. J. Math. Mech. 15, 983–1002 (1966)Nagami K.: Σ-spaces. Fund. Math. 61, 169–192 (1969)Narayanaswami P.P., Saxon S.A.: (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology. Math. Ann. 274, 627–641 (1986). doi: 10.1007/BF01458598Negrepontis S.: Absolute Baire sets. Proc. Am. Math. Soc. 18(4), 691–694 (1967). doi: 10.2307/2035440Orihuela J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36(2), 143–152 (1987). doi: 10.1112/jlms/s2-36.1.143Orihuela, J.: On weakly Lindelöf Banach spaces. In: Bierstedt, K.D. et al. (eds.) Progress in Functional Analysis, pp. 279–291. Elsvier, Amsterdam (1992). doi: 10.1016/S0304-0208(08)70326-8Orihuela J., Schachermayer W., Valdivia M.: Every Readom–Nikodym Corson compact space is Eberlein compact. Stud. Math. 98, 157–174 (1992)Orihuela, J., Valdivia, M.: Projective generators and resolutions of identity in Banach spaces. Rev. Mat. Complut. 2(Supplementary Issue), 179–199 (1989)Pérez Carreras P., Bonet J.: Barrelled Locally Convex Spaces, Mathematics Studies 131. North-Holland, Amsterdam (1987)Pfister H.H.: Bemerkungen zum Satz über die separabilität der Fréchet-Montel Raüme. Arch. Math. (Basel) 27, 86–92 (1976). doi: 10.1007/BF01224645Robertson N.: The metrisability of precompact sets. Bull. Aust. Math. Soc. 43(1), 131–135 (1991). doi: 10.1017/S0004972700028847Rogers C.A., Jayne J.E., Dellacherie C., Topsøe F., Hoffman-Jørgensen J., Martin D.A., Kechris A.S., Stone A.H.: Analytic Sets. Academic Press, London (1980)Saxon S.A.: Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Math. Ann. 197(2), 87–106 (1972). doi: 10.1007/BF01419586Schawartz L.: Radom Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford (1973)Schlüchtermann G., Wheller R.F.: On strongly WCG Banach spaces. Math. Z. 199(3), 387–398 (1988). doi: 10.1007/BF01159786Schlüchtermann G., Wheller R.F.: The Mackey dual of a Banach space. Note Math. 11, 273–287 (1991)Schmets, J.: Espaces de functions continues. Lecture Notes in Mathematics, vol 519, Springer-Verlag, Berlin-New York (1976)Talagrand M.: Sur une conjecture de H. H. Corson. Bull. Soc. Math. 99, 211–212 (1975)Talagrand M.: Espaces de Banach faiblement K-analytiques. Ann. Math. 110, 407–438 (1979)Talagrand M.: Weak Cauchy sequences in L 1(E). Am. J. Math. 106(3), 703–724 (1984). doi: 10.2307/2374292Tkachuk V.V.: A space C p (X) is dominated by irrationals if and only if it is K-analytic. Acta Math. Hungar. 107(4), 253–265 (2005)Tkachuk V.V.: Lindelöf Σ-spaces: an omnipresent class. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 104(2), 221–244 (2010). doi: 10.5052/RACSAM.2010.15Todd A.R., Render H.: Continuous function spaces, (db)-spaces and strongly Hewitt spaces. Topol. Appl. 141, 171–186 (2004). doi: 10.1016/j.topol.2003.12.005Valdivia M.: Topics in Locally Convex Spaces, Mathematics Studies 67. North-Holland, Amsterdam (1982)Valdivia M.: Espacios de Fréchet de generación débilmente compacta. Collect. Math. 38, 17–25 (1987)Valdivia M.: Resolutions of identity in certain Banach spaces. Collect. Math. 38, 124–140 (1988)Valdivia M.: Resolutions of identity in certain metrizable locally convex spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 83, 75–96 (1989)Valdivia M.: Projective resolutions of identity in C(K) spaces. Arch. Math. (Basel) 54, 493–498 (1990)Valdivia, M.: Resoluciones proyectivas del operador identidad y bases de Markusevich en ciertos espacios de Banach. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 84, 23–34Valdivia M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35(2), 149–168 (1987). doi: 10.1112/jlms/s2-35.1.149Walker, R.C.: The Stone-Čech compactification Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 83. Springer, Berlin (1974

    Genetic Improvement for Milk and Meat Production in the Tropics

    Get PDF
    Theoretical and practical ways to improve meat and milk production in the tropics by selection within local Bos indicus breeds, within Bos taurus x Bos indicus composite populations, upgrading of Bos indicus with Bos taurus breeds and though different crossbreeding programs have been discussed by various authors and summarized by Mason and Buvanendran (1982), Gregory et al. (1982) and Hickman (1979). Only few publications (Auriol, 1984; Chacko et al., 1985; Donegan and Roberts, 1984) exist on successful programs but numerous reports in developing agencies (FAO, 1985; SDC, 1985) indicate that many possibilities have been exploited and that various breeding programs in the tropics resulted in a considerable improvement of meat and/or milk production. The problem is that many reports are based on small numbers of animals kept under various conditions and observed over a short period. Main reasons for the realized improvement are generally crossbreeding programs which combine that adaptability of Bos indicus breeds to harsh environments, the production portential of the Bos taurus breeds and lead to large heterosis effects characteristic for Bos taurus x Bod indicus crosses. The problem of the appropriate breeding policy, the optimum Bos taurus inheritance in tropical cattle populations, the suitability of different Bos taurus breeds to be crossed with local zebu breeds have been discussed in a large number of reports (FAO, 1984; FAO, 1985; SDC, 1985) and publications, for example Meyn and Wilkins (1974, 1975), Mason (1974), Cunningham (1979, 1981) Frisch and Vercoe (1982), Hickman (1981), Cartwright (1982), Syrstad (1985) and many others. The main conclusion is that Bos taurus inheritance should not exceed 50 to 75%. In other words, the existance of genotype x environment interactions is generally accepted. There is no consensus about breeding policies and merits of different Bos taurus breeds for crossbreeding programs in the tropics. The application of new techniques like artificial insemination, embryo transfer and eventually transgenic animals open new ways to improve milk and meat production in the tropics. For consultants involved in practical breeding programs, the choice of the appropriate breeding strategy will not become easier. In addition, more than in temperate countries, animal production in the tropics is generally not just a business, but rather part of a socio-economical and ecological complex. In relation to the large number of contributions on possible breeding policies, there are only a few scientific publications in which tropical breeding programs are analyzed in retrospect (Acharya and Lush, 1968; Franklin et al., 1976; Baker and Morris, 1984). The experience is that, in most situations, breeding strategies applied in temperate countries cannot be transferred to tropical conditions without modifications. The main reasons are: - it is not possible to simply transfer Bos taurus breeds to the tropics because of climatic and health problems, - the breeding objectives for cattle in the topics are often not identical with those in temperate countries and there is limited experience in selecting for these objectives, - the infrastructure required for data recording and processing is often not available, - due to a large number of more or less planned crossbreeding programs, a high proportion of the tropical cattle population consists of crossbred animals, and there is little experience in selecting within composites, - genetic and physiological aspects in improvement of specific traits are not necessarily similar in the tropics as in temperate zones. The purpose of this paper is to discuss some problems related to breeding programs for meat and/or milk production in the tropics, rather than results of well designed experiments. A few examples will be chosen to illustrate specific aspects. We chose them form out own involvement in tropical breeding programs or from well documented reports. Main emphasis is given to developing countries
    corecore