123 research outputs found

    An Analysis of the Water Situation in the United States: 1989-2040

    Get PDF
    Several Federal agencies have historically had responsibilities for conducting assessments of the Nation\u27s water resources. The U.S. Geological Survey (USGS), U.S. Army Corps of Engineers, U.S. Department of Agriculture\u27s Soil Conservation Service (SCS), and U.S. Environmental Protection Agency (EPA) and its predecessor agencies, among others, have conducted studies assessing the current situation and future prospects for water in particular regions of the country. Responsibility for national water assessments was assigned to the U.S. Water Resources Council (WRC) by the Water Resources Planning Act of 1965. With the demise of the WRC in 1981, several member agencies have attempted to take over parts of the WRC role and improve their own analyses. USGS began to publish an annual National Water Summary in 1984. The first three annual reports, Water-Supply Paper 2250 (USGS 1984), 2275 (USGS 1985), and 2300 (USGS 1986), have been used extensively in the preparation of this Assessment. In some cases, extended portions of text have been lifted from those reports; in other cases, topics are presented in the same order. The 1986 Summary (USGS 1988) was published after preparation of this report was completed. Similarly , EPA publishes biennial reports to Congress on the National Water Quality Inventory. Information from these reports has also been extracted for this Assessment. The Forests and Rangelands Renewable Resources Planning Act of 1974 (88 Stat. 476, as amended; 16 U.S.C. 1601-1614) (RPA) directs the Secretary of Agriculture to conduct an assessment of the Nation\u27s forest and rangeland resource situation covering all renewable resources within the purview of the Forest Service. Water is one of the renewable resources. RPA legislation also directed the Forest Service to follow two principles in conducting assessments. First, assessments were to analyze the resource situation from a national perspective-including all ownerships, public and private. Second, the Forest Service was to use, to the extent practicable, information collected by other public agencies on the resources studied. This report faithfully follows that direction. This report has nine chapters beginning with a broad overview of the current water resource situation in the United States. The extensive reference citations are a road map directing readers to more detailed discussions of individual topics in the reports of other agencies. One requirement of the RPA legislation is an analysis, looking 50 years into the future, of prospective demands and supplies of each resource. Chapter 3 contains an analysis of historical trends in withdrawals and consumption and projections to 2040 based on data from USGS and SCS. In this report, withdrawals and consumption are treated as two different forms of demand for water. Both forms of demand are projected independently of supplies. Consumption is used in later chapters as the preferred definition of demand. Chapter 4 contains an analysis of historical trends in water supplies and projections to 2040 based upon generalized water budgets. The projections of demand and supply are the results of new analyses by the author. It is important to recognize that trends projected in these chapters are not in any sense most likely. Rather, they portray what might occur if factors determining water resource management and use continue unchanged from those in effect since 1970. Obviously, projections of past trends will demonstrate conflicts between the level of consumptive use demanded and the level of supply projected to be available. A discussion of those conflicts is presented in Chapter 5 and the social, environmental, and economic implications of those conflicts is presented in Chapter 6. Chapters 5 and 6 also contain analyses of some alternative future scenarios for water resources having the potential to alter the demand and supply projections which were based upon recent trends. Although projections of consumption demands and available supplies differ-creating either surpluses or shortages-these differences will not really occur. Rather, the economy will function and prices for water and other goods and services (such as water treatment) will change, thereby bringing supplies and demand into equilibrium. These adjustments, if not planned in advance, can lead to undesirable consequences. Water resource users and managers have opportunities to alter use and management practices inherent in the recent trends to achieve a more desirable future water resource situation. These opportunities are outlined in Chapter 7. Similarly, there are some obstacles-economic, social, environmental, institutional, and regulatory-to taking advantage of opportunities. These obstacles are discussed in Chapter 8. Chapter 9 discusses implications of these opportunities and obstacles on Forest Service resource management and research programs, providing guidance for agency strategic planning

    Nanostructure Dependence of T‐Nb₂O₅ Intercalation Pseudocapacitance Probed Using Tunable Isomorphic Architectures

    Get PDF
    Intercalation pseudocapacitance has emerged as a promising energy storage mechanism that combines the energy density of intercalation materials with the power density of capacitors. Niobium pentoxide was the first material described as exhibiting intercalation pseudocapacitance. The electrochemical kinetics for charging/discharging this material are surface‐limited for a wide range of conditions despite intercalation via diffusion. Investigations of niobium pentoxide nanostructures are diverse and numerous; however, none have yet compared performance while adjusting a single architectural parameter at a time. Such a comparative approach reduces the reliance on models and the associated assumptions when seeking nanostructure–property relationships. Here, a tailored isomorphic series of niobium pentoxide nanostructures with constant pore size and precision tailored wall thickness is examined. The sweep rate at which niobium pentoxide transitions from being surface‐limited to being diffusion‐limited is shown to depend sensitively upon the nanoscale dimensions of the niobium pentoxide architecture. Subsequent experiments probing the independent effects of electrolyte concentration and film thickness unambiguously identify solid‐state lithium diffusion as the dominant diffusion constraint even in samples with just 48.5–67.0 nm thick walls. The resulting architectural dependencies from this type of investigation are critical to enable energy‐dense nanostructures that are tailored to deliver a specific power density

    Tunable anisotropy in inverse opals and emerging optical properties

    Get PDF
    Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the realizable structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method to introduce anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol-gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure, while completely avoiding the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies clearly identify increasing degrees of sol-gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature

    Reversible Microscale Assembly of Nanoparticles Driven by the Phase Transition of a Thermotropic Liquid Crystal

    Get PDF
    The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase-transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase under anchoring-driven planar alignment leads to the assembly of individual nanometer-sized particles into arrays of micrometer-sized agglomerates, whose size and characteristic spacing can be tuned by varying the cooling rate. Phase field simulations coupling the conserved and nonconserved order parameters exhibit a similar evolution of the morphology as the experimental observations. This fully reversible process offers control over structural order on the microscopic level and is an interesting model system for the programmable and reconfigurable patterning of nanocomposites with access to micrometer-sized periodicities

    Reversible microscale assembly of nanoparticles driven by the phase transition of a thermotropic liquid crystal

    Get PDF
    The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase-transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase under anchoring-driven planar alignment leads to the assembly of individual nanometer-sized particles into arrays of micrometer-sized agglomerates, whose size and characteristic spacing can be tuned by varying the cooling rate. Phase field simulations coupling the conserved and nonconserved order parameters exhibit a similar evolution of the morphology as the experimental observations. This fully reversible process offers control over structural order on the microscopic level and is an interesting model system for the programmable and reconfigurable patterning of nanocomposites with access to micrometer-sized periodicities

    Reversible Microscale Assembly of Nanoparticles Driven by the Phase Transition of a Thermotropic Liquid Crystal

    Get PDF
    The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase-transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase under anchoring-driven planar alignment leads to the assembly of individual nanometer-sized particles into arrays of micrometer-sized agglomerates, whose size and characteristic spacing can be tuned by varying the cooling rate. Phase field simulations coupling the conserved and nonconserved order parameters exhibit a similar evolution of the morphology as the experimental observations. This fully reversible process offers control over structural order on the microscopic level and is an interesting model system for the programmable and reconfigurable patterning of nanocomposites with access to micrometer-sized periodicities.</p

    Vestibular Perception following Acute Unilateral Vestibular Lesions.

    Get PDF
    Little is known about the vestibulo-perceptual (VP) system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO) and VP function in 25 patients with vestibular neuritis (VN) acutely (2 days after onset) and after compensation (recovery phase, 10 weeks). Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2) and velocity steps of 90°/s (acceleration 180°/s(2)). We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of perceptual processes (ultimately cortical) participating in vestibular compensation, suppressing asymmetry acutely in unilateral vestibular lesions

    Representation of Neck Velocity and Neck–Vestibular Interactions in Pursuit Neurons in the Simian Frontal Eye Fields

    Get PDF
    The smooth pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space (i.e., gaze-movement) during head movement. Normally, the head moves on the stationary trunk. Vestibular signals cannot distinguish whether the head or whole body is moving. Neck proprioceptive inputs provide information about head movements relative to the trunk. Previous studies have shown that the majority of pursuit neurons in the frontal eye fields (FEF) carry visual information about target velocity, vestibular information about whole-body movements, and signal eye- or gaze-velocity. However, it is unknown whether FEF neurons carry neck proprioceptive signals. By passive trunk-on-head rotation, we tested neck inputs to FEF pursuit neurons in 2 monkeys. The majority of FEF pursuit neurons tested that had horizontal preferred directions (87%) responded to horizontal trunk-on-head rotation. The modulation consisted predominantly of velocity components. Discharge modulation during pursuit and trunk-on-head rotation added linearly. During passive head-on-trunk rotation, modulation to vestibular and neck inputs also added linearly in most neurons, although in half of gaze-velocity neurons neck responses were strongly influenced by the context of neck rotation. Our results suggest that neck inputs could contribute to representing eye- and gaze-velocity FEF signals in trunk coordinates

    The moving minimum audible angle is smaller during self motion than during source motion

    Get PDF
    We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system-in a manner not unlike the vestibulo-ocular reflex-works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion. We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create "head-stabilized" signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA). This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this "self-motion" condition we measured MMAA in a second "source-motion" condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition. For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues

    Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys

    Get PDF
    We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements
    corecore