387 research outputs found
Separation of Quasiparticle and Phononic Heat Currents in YBCO
Measurements of the transverse (k_{xy}) and longitudinal (k_{xx}) thermal
conductivity in high magnetic fields are used to separate the quasiparticle
thermal conductivity (k_{xx}^{el}) of the CuO_2-planes from the phononic
thermal conductivity in YBa_2Cu_3O_{7-\delta}. k_{xx}^{el} is found to display
a pronounced maximum below T_c. Our data analysis reveals distinct transport
(\tau) and Hall (\tau_H) relaxation times below T_c: Whereas \tau is strongly
enhanced, \tau_H follows the same temperature dependence as above T_c
Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures
The idea to utilize not only the charge but also the spin of electrons in the
operation of electronic devices has led to the development of spintronics,
causing a revolution in how information is stored and processed. A novel
advancement would be to develop ultrafast spintronics using femtosecond laser
pulses. Employing terahertz (10 Hz) emission spectroscopy, we
demonstrate optical generation of spin-polarized electric currents at the
interfaces of metallic ferromagnetic heterostructures at the femtosecond
timescale. The direction of the photocurrent is controlled by the helicity of
the circularly polarized light. These results open up new opportunities for
realizing spintronics in the unprecedented terahertz regime and provide new
insights in all-optical control of magnetism.Comment: 3 figures and 2 tables in the main tex
Fractal Conductance Fluctuations in Gold--Nanowires
A detailed analysis of magneto-conductance fluctuations of quasiballistic
gold-nanowires of various lengths is presented. We find that the variance
when analyzed for much
smaller than the correlation field varies according to with indicating that the graph of
vs. is fractal. We attribute this behavior to the existence of
long-lived states arising from chaotic trajectories trapped close to regular
classical orbits. We find that decreases with increasing length of the
wires.Comment: 5 pages, Revtex with epsf, 4 Postscript figures, final version
accepted as Phys. Rev. Let
Strong anisotropy of superexchange in the copper-oxygen chains of La_{14-x}Ca_{x}Cu_{24}O_{41}
Electron spin resonance data of Cu^{2+} ions in La_{14-x}Ca_{x}Cu_{24}O_{41}
crystals (x=9,11,12) reveal a very large width of the resonance line in the
paramagnetic state. This signals an unusually strong anisotropy of ~10% of the
isotropic Heisenberg superexchange in the Cu-O chains of this compound. The
strong anisotropy can be explained by the specific geometry of two symmetrical
90 degree Cu-O-Cu bonds, which boosts the importance of orbital degrees of
freedom. Our data show the apparent limitations of the applicability of an
isotropic Heisenberg model to the low dimensional cuprates.Comment: 14 pages, 3 figures included, to be published in Phys. Rev. Let
Quantum melting of incommensurate domain walls in two dimensions
Quantum fluctuations of periodic domain-wall arrays in two-dimensional
incommensurate states at zero temperature are investigated using the elastic
theory in the vicinity of the commensurate-incommensurate transition point.
Both stripe and honeycomb structures of domain walls with short-range
interactions are considered. It is revealed that the stripes melt and become a
stripe liquid in a large-wall-spacing (low-density) region due to dislocations
created by quantum fluctuations. This quantum melting transition is of second
order and characterized by the three-dimensional XY universality class.
Zero-point energies of the stripe and honeycomb structures are calculated. As a
consequence of these results, phase diagrams of the domain-wall solid and
liquid phases in adsorbed atoms on graphite are discussed for various
domain-wall masses. Quantum melting of stripes in the presence of long-range
interactions that fall off as power laws is also studied. These results are
applied to incommensurate domain walls in two-dimensional adsorbed atoms on
substrates and in doped antiferromagnets, e.g. cuprates and nickelates.Comment: 11 pages, 5 figure
Adsorption Isotherms of Hydrogen: The Role of Thermal Fluctuations
It is shown that experimentally obtained isotherms of adsorption on solid
substrates may be completely reconciled with Lifshitz theory when thermal
fluctuations are taken into account. This is achieved within the framework of a
solid-on-solid model which is solved numerically. Analysis of the fluctuation
contributions observed for hydrogen adsorption onto gold substrates allows to
determine the surface tension of the free hydrogen film as a function of film
thickness. It is found to decrease sharply for film thicknesses below seven
atomic layers.Comment: RevTeX manuscript (3 pages output), 3 figure
Optical study of orbital excitations in transition-metal oxides
The orbital excitations of a series of transition-metal compounds are studied
by means of optical spectroscopy. Our aim was to identify signatures of
collective orbital excitations by comparison with experimental and theoretical
results for predominantly local crystal-field excitations. To this end, we have
studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10,
ranging from early to late transition-metal ions, from t_2g to e_g systems, and
including systems in which the exchange coupling is predominantly
three-dimensional, one-dimensional or zero-dimensional. With the exception of
LaMnO3, we find orbital excitations in all compounds. We discuss the
competition between orbital fluctuations (for dominant exchange coupling) and
crystal-field splitting (for dominant coupling to the lattice). Comparison of
our experimental results with configuration-interaction cluster calculations in
general yield good agreement, demonstrating that the coupling to the lattice is
important for a quantitative description of the orbital excitations in these
compounds. However, detailed theoretical predictions for the contribution of
collective orbital modes to the optical conductivity (e.g., the line shape or
the polarization dependence) are required to decide on a possible contribution
of orbital fluctuations at low energies, in particular in case of the orbital
excitations at about 0.25 eV in RTiO3. Further calculations are called for
which take into account the exchange interactions between the orbitals and the
coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved
calculation of orbital excitation energies in TiOCl, figure 16 improved,
references updated, 33 pages, 20 figure
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Thermal conductivity via magnetic excitations in spin-chain materials
We discuss the recent progress and the current status of experimental
investigations of spin-mediated energy transport in spin-chain and spin-ladder
materials with antiferromagnetic coupling. We briefly outline the central
results of theoretical studies on the subject but focus mainly on recent
experimental results that were obtained on materials which may be regarded as
adequate physical realizations of the idealized theoretical model systems. Some
open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
- …
