8,727 research outputs found
The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging
Recent data from animal studies raise the possibility that dopaminergic neuromodulation promotes the encoding of novel stimuli. We investigated a possible role for the dopaminergic midbrain in human episodic memory by measuring how polymorphisms in dopamine clearance pathways affect encoding-related brain activity (functional magnetic resonance imaging) in an episodic memory task. In 51 young, healthy adults, successful episodic encoding was associated with activation of the substantia nigra. This midbrain activation was modulated by a functional variable number of tandem repeat (VNTR) polymorphism in the dopamine transporter (DAT1) gene. Despite no differences in memory performance between genotype groups, carriers of the (low expressing) 9-repeat allele of the DAT1 VNTR showed relatively higher midbrain activation when compared with subjects homozygous for the 10-repeat allele, who express DAT1 at higher levels. The catechol-O-methyl transferase (COMT) Val108/158Met polymorphism, which is known to modulate enzyme activity, affected encoding-related activity in the right prefrontal cortex (PFC) and in occipital brain regions but not in the midbrain. Moreover, subjects homozygous for the (low activity) Met allele showed stronger functional coupling between the PFC and the hippocampus during encoding. Our finding that genetic variations in the dopamine clearance pathways affect encoding-related activation patterns in midbrain and PFC provides strong support for a role of dopaminergic neuromodulation in human episodic memory formation. It also supports the hypothesis of anatomically and functionally distinct roles for DAT1 and COMT in dopamine metabolism, with DAT1 modulating rapid, phasic midbrain activity and COMT being particularly involved in prefrontal dopamine clearance
Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell
Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely
explored to modulate physical properties of materials by tuning their lattice
degree of freedom. Independently, electrical field is able to tune the
electronic degree of freedom of functional materials via, for example, the
field-effect transistor (FET) configuration. Combining these two orthogonal
approaches would allow discovery of new physical properties and phases going
beyond the known phase space. Such experiments are, however, technically
challenging and have not been demonstrated. Herein, we report a feasible
strategy to prepare and measure FETs in a DAC by lithographically patterning
the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated
in the DAC using few-layer MoS2 and BN as the channel semiconductor and
dielectric layer, respectively. It is found that the mobility, conductance,
carrier concentration, and contact conductance of MoS2 can all be significantly
enhanced with pressure. We expect that the approach could enable unprecedented
ways to explore new phases and properties of materials under coupled
mechano-electrostatic modulation.Comment: 15 pages, 5 figure
Chemical Composition of Longissimus Dorsi and Biceps Femoris on Different Slaughter Weight of Local Male Sheep Reared in the Village
Quality of meat can be assessed from the change of its chemical components. Characteristics of meat chemical composition depend on species, age, sex, feed, location and function of muscle section in body. The objective of the research was to study meat chemical composition of local male sheep on different slaughter weight and different muscle. Local male sheep which were used as subject research obtained from Temanggung, i.e. healthy male sheep, aged 1.5-12 months; slaughtered at 6 categories of slaughter weight ranging from 5 to 30 kg. The sheep was slaughtered and sampled for chemical composition determination of Longissimus dorsi (LD) dan Biceps femoris (BF). The nested ANOVA was used to analyze data and any differences among the groups were further tested using Duncan Multiple Range Tests (DMRT). The results showed that moisture, ash, fat and cholesterol content of the meat from different slaughtered weight were not significant (P>0.05). The increase of slaughter weight significantly (P0.05). The conclusion of the research were (1) moisture, ash, fat and cholesterol content of local male sheep meat from different slaughtered weight were not significant, but protein and vitamin A content of the meat from different slaughtered weight were significant, (2) chemical composition of local male sheep from LD and BF were not significant. (Animal Production 8(1): 1-7 (2006
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
1800 hours London time on 16 December. 19 pages; 7 figure
Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition
In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion
Anonymous Single-Sign-On for n designated services with traceability
Anonymous Single-Sign-On authentication schemes have been proposed to allow
users to access a service protected by a verifier without revealing their
identity which has become more important due to the introduction of strong
privacy regulations. In this paper we describe a new approach whereby anonymous
authentication to different verifiers is achieved via authorisation tags and
pseudonyms. The particular innovation of our scheme is authentication can only
occur between a user and its designated verifier for a service, and the
verification cannot be performed by any other verifier. The benefit of this
authentication approach is that it prevents information leakage of a user's
service access information, even if the verifiers for these services collude
which each other. Our scheme also supports a trusted third party who is
authorised to de-anonymise the user and reveal her whole services access
information if required. Furthermore, our scheme is lightweight because it does
not rely on attribute or policy-based signature schemes to enable access to
multiple services. The scheme's security model is given together with a
security proof, an implementation and a performance evaluation.Comment: 3
Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era
The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures
Ensuring transparency and minimization of methodologic bias in preclinical pain research: PPRECISE considerations
Facile Synthesis of High Quality Graphene Nanoribbons
Graphene nanoribbons have attracted attention for their novel electronic and
spin transport properties1-6, and because nanoribbons less than 10 nm wide have
a band gap that can be used to make field effect transistors. However,
producing nanoribbons of very high quality, or in high volumes, remains a
challenge. Here, we show that pristine few-layer nanoribbons can be produced by
unzipping mildly gas-phase oxidized multiwalled carbon nanotube using
mechanical sonication in an organic solvent. The nanoribbons exhibit very high
quality, with smooth edges (as seen by high-resolution transmission electron
microscopy), low ratios of disorder to graphitic Raman bands, and the highest
electrical conductance and mobility reported to date (up to 5e2/h and 1500
cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the
nanoribbons exhibit phase coherent transport and Fabry-Perot interference,
suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2%
of the starting raw nanotube soot material, which was significantly higher than
previous methods capable of producing high quality narrow nanoribbons1. The
relatively high yield synthesis of pristine graphene nanoribbons will make
these materials easily accessible for a wide range of fundamental and practical
applications.Comment: Nature Nanotechnology in pres
- …
