2,320 research outputs found

    Analyzing Policy Risk and Accounting for Strategy: Auctions in the National Airspace System

    Get PDF
    We examine the potential for simple auction mechanisms to efficiently allocate arrival and departure slots during Ground Delay Programs (GDPs). The analysis is conducted using a new approach to predicting strategic behavior called Predictive Game Theory (PGT). The difference between PGT and the familiar Equilibrium Concept Approach (ECA) is that PGT models produce distribution-valued solut tion concepts rather than set-valued ones. The advantages of PGT over ECA in policy analysis and design are that PGT allows for decision-theoretic prediction and policy evaluation. Furthermore, PGT allows for a comprehensive account of risk, including two types of risk, systematic and modeling, that cannot be considered with the ECA. The results show that the second price auction dominates the first price auction in many decision-relevant categories, including higher expected efficiency, lower variance in efficiency, lower probability of significant efficiency loss and higher probability of significant efficiency gain. These findings are despite the fact that there is no a priori reason to expect the second price auction to be more efficient because none of the conventional reasons for preferring second price over first price auctions, i.e. dominant strategy implementability, apply to the GDP slot auction setting.auction, ground delay program, entropy, predictive game theory, strategic risk

    How to Use Decision Theory to Choose Among Mechanisms

    Get PDF
    We extend a recently introduced approach to the positive problem of game theory, Predictive Game Theory (PGT Wolpert (2008). In PGT, modeling a game results in a probability distribution over possible behavior profiles. This contrasts with the conventional approach where modeling a game results in an equilibrium set of possible behavior profiles. We analyze three PGT models. Two of these are based on the well-known quantal response and epsilon equilibrium concepts, while the third is entirely new to the economics literature. We use a Cournot game to demonstrate how to use our extension of PGT, concentrating on model combination, modeler uncertainty, and mechanism design. In particular, we emphasize how PGT allows a modeler to perform prediction and mechanism design in a manner that is fully consistent with decision theory. We do this even in situations where conventional approaches yield multiple equilibria, an ability that is necessary for a fully decision theoretic mechanism design. Where possible, PGT results are compared against equilibrium set analogs.

    Game Mining: How to Make Money from those about to Play a Game

    Get PDF
    It is known that a player in a noncooperative game can benefit by publicly re- stricting their possible moves before start of play. We show that, more generally, a player may benefit by publicly committing to pay an external party an amount that is contingent on the game's outcome. We explore what happens when external parties (who we call game miners) discover this fact and seek to profit from it by entering an outcome-contingent contract with the players. We analyze various bargaining games between miners and players for determining such an outcome- contingent contract. We establish restrictions on the strategic settings in which a game miner can profit, and bounds on the game miner's profit given various structured bargaining games. These bargaining games include playing the players against one another, as well as allowing the players to pay the miner(s) for exclu- sivity and first-mover advantage. We also establish that when all players can enter contracts with miners, to guarantee the existence of equilibria it is necessary to assume that players can randomize over the contracts they make.

    On the micro mechanics of one-dimensional normal compression

    Get PDF
    Discrete-element modelling has been used to investigate the micro mechanics of one-dimensional compression. One-dimensional compression is modelled in three dimensions using an oedometer and a large number of particles, and without the use of agglomerates. The fracture of a particle is governed by the octahedral shear stress within the particle due to the multiple contacts and a Weibull distribution of strengths. Different fracture mechanisms are considered, and the influence of the distribution of fragments produced for each fracture on the global particle size distribution and the slope of the normal compression line is investigated. Using the discrete-element method, compression is related to the evolution of a fractal distribution of particles. The compression index is found to be solely a function of the strengths of the particles as a function of size

    Improving the mass determination of Galactic Cepheids

    Get PDF
    We have selected a sample of Galactic Cepheids for which accurate estimates of radii, distances, and photometric parameters are available. The comparison between their pulsation masses, based on new Period-Mass-Radius (PMR) relations, and their evolutionary masses, based on both optical and NIR Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of the order of 10% smaller than the evolutionary masses. Current pulsation masses show, at fixed radius, a strongly reduced dispersion when compared with values published in literature.The increased precision in the pulsation masses is due to the fact that our predicted PMR relations based on nonlinear, convective Cepheid models present smaller standard deviations than PMR relations based on linear models. At the same time, the empirical radii of our Cepheid sample are typically accurate at the 5% level. Our evolutionary mass determinations are based on stellar models constructed by neglecting the effect of mass-loss during the He burning phase. Therefore, the difference between pulsation and evolutionary masses could be intrinsic and does not necessarily imply a problem with either evolutionary and/or nonlinear pulsation models. The marginal evidence of a trend in the difference between evolutionary and pulsation masses when moving from short to long-period Cepheids is also briefly discussed. The main finding of our investigation is that the long-standing Cepheid mass discrepancy seems now resolved at the 10% level either if account for canonical or mild convective core overshooting evolutionary models.Comment: 14 pages, 4 postscript figures, accepted for publication on ApJ Letter

    Artifact reduction in multichannel pervasive EEG using hybrid WPT-ICA and WPT-EMD signal decomposition techniques

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In order to reduce the muscle artifacts in multi-channel pervasive Electroencephalogram (EEG) signals, we here propose and compare two hybrid algorithms by combining the concept of wavelet packet transform (WPT), empirical mode decomposition (EMD) and Independent Component Analysis (ICA). The signal cleaning performances of WPT-EMD and WPT-ICA algorithms have been compared using a signal-to-noise ratio (SNR)-like criterion for artifacts. The algorithms have been tested on multiple trials of four different artifact cases viz. eye-blinking and muscle artifacts including left and right hand movement and head-shaking.This work was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241

    Towards Precision Photometry with Extremely Large Telescopes: the Double Subgiant Branch of NGC 1851

    Get PDF
    The Extremely Large Telescopes currently under construction have a collecting area that is an order of magnitude larger than the present largest optical telescopes. For seeing-limited observations the performance will scale as the collecting area but, with the successful use of adaptive optics, for many applications it will scale as D4D^4 (where DD is the diameter of the primary mirror). Central to the success of the ELTs, therefore, is the successful use of multi-conjugate adaptive optics (MCAO) that applies a high degree correction over a field of view larger than the few arcseconds that limits classical adaptive optics systems. In this letter, we report on the analysis of crowded field images taken on the central region of the Galactic globular cluster NGC 1851 in KsK_s band using GeMS at the Gemini South telescope, the only science-grade MCAO system in operation. We use this cluster as a benchmark to verify the ability to achieve precise near-infrared photometry by presenting the deepest KsK_s photometry in crowded fields ever obtained from the ground. We construct a colour-magnitude diagram in combination with the F606W band from HST/ACS. As well as detecting the "knee" in the lower main sequence at Ks20.5K_s\simeq20.5, we also detect the double subgiant branch of NGC 1851, that demonstrates the high photometric accuracy of GeMS in crowded fields.Comment: Accepted for publication in ApJL (3 Sep 2015). A version of the paper with high-res images is available at http://www.astro.uvic.ca/~alan/ms_arxiv_hr.pd

    A lack of classical Cepheids in the inner part of the Galactic disk

    Full text link
    Recent large-scale infrared surveys have been revealing stellar populations in the inner Galaxy seen through strong interstellar extinction in the disk. In particular, classical Cepheids with their period-luminosity and period-age relations are useful tracers of Galactic structure and evolution. Interesting groups of Cepheids reported recently include four Cepheids in the Nuclear Stellar Disk (NSD), about 200 pc around the Galactic Centre, found by Matsunaga et al. and those spread across the inner part of the disk reported by Dekany and collaborators. We here report our discovery of nearly thirty classical Cepheids towards the bulge region, some of which are common with Dekany et al., and discuss the large impact of the reddening correction on distance estimates for these objects. Assuming that the four Cepheids in the NSD are located at the distance of the Galactic Centre and that the near-infrared extinction law, i.e. wavelength dependency of the interstellar extinction, is not systematically different between the NSD and other bulge lines-of-sight, most of the other Cepheids presented here are located significantly further than the Galactic Centre. This suggests a lack of Cepheids in the inner 2.5 kpc region of the Galactic disk except the NSD. Recent radio observations show a similar distribution of star-forming regions.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Cepheids and other short-period variables near the Galactic Centre

    Get PDF
    We report the result of our near-infrared survey of short-period variable stars (P<60d) in a field-of-view of 20'x30' towards the Galactic Centre. Forty-five variables are discovered and we classify the variables based on their light curve shapes and other evidence. In addition to 3 classical Cepheids reported previously, we find 16 type II Cepheids, 24 eclipsing binaries, one pulsating star with P=0.265d (RR Lyr or delta Sct) and one Cepheid-like variable whose nature is uncertain. Eclipsing binaries are separated into the foreground objects and those significantly obscured by interstellar extinction. One of the reddened binaries contains an O-type supergiant and its light curve indicates an eccentric orbit. We discuss the nature and distribution of type II Cepheids as well as the distance to the Galactic Centre based on these Cepheids and other distance indicators. The estimates of R0(GC) we obtained based on photometric data agree with previous results obtained with kinematics of objects around the GC. Furthermore, our result gives a support to the reddening law obtained by Nishiyama and collaborators, A(Ks)/E(H-Ks)=1.44, because a different reddening law would result in a rather different distance estimate.Comment: 13 pages, 10 figures, 7tables, accepted for publication in MNRA
    corecore