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Abstract

We extend a recently introduced approach to the positive problem of game the-

ory, Predictive Game Theory (PGT Wolpert (2008)). In PGT, modeling a game

results in a probability distribution over possible behavior profiles. This contrasts

with the conventional approach where modeling a game results in an equilibrium

set of possible behavior profiles. We analyze three PGT models. Two of these are

based on the well-known quantal response and epsilon equilibrium concepts, while

the third is entirely new to the economics literature. We use a Cournot game to

demonstrate how to use our extension of PGT, concentrating on model combina-

tion, modeler uncertainty, and mechanism design. In particular, we emphasize how

PGT allows a modeler to perform prediction and mechanism design in a manner

that is fully consistent with decision theory. We do this even in situations where

conventional approaches yield multiple equilibria, an ability that is necessary for a

fully decision theoretic mechanism design. Where possible, PGT results are com-

pared against equilibrium set analogs.

We would like to thank George Judge, Julian Jamison, Alan Isaac and audience members at the
American University Economics Seminar.
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1 Introduction

Predictive Game Theory (PGT), as first described in Wolpert (2008), is the practice of

using what is known about a strategic situation, including utility information, player ra-

tionality, focal points, symmetry, equality, player honesty, etc., to formulate a probability

distribution over all possible behaviors1. This distribution reflects the uncertainty that

the external modeler of the strategic situation has about that situation. It is distinct

from the uncertainty of the participants in that situation. For example, players in a non-

cooperative game might know one another’s utility functions, while the modeler does not.

Conversely, the modeler might know those utility functions, while the players do not.

Whereas conventional game theory modeling produces a set of possible behaviors,

PGT produces a full distribution over possible behaviors. Wolpert suggests a general

Bayesian form for such a modeler’s probability distribution over all possible behaviors. In

this paper, we consider three statistical models that fall under that general Bayesian form.

Two of these models are based on the well-known conventional game theory concepts

of quantal response equilibrium (QRE) [see McKelvey and Palfrey (1995)] and epsilon

equilibrium [see Radner (1980)], while the third comes from the multi-agent systems

literature [see Wolpert (2003)].

In this paper we develop these models, demonstrate their properties and discuss com-

putational methods for their implementation. Using the example of a Cournot duopoly,

we illustrate how PGT seamlessly incorporates modeler uncertainty about utilities, ra-

tionalities or other aspects of the game. This allows PGT to model aspects of strategic

situations that conventional approaches cannot consider, e.g., the relative probabilities of

multiple Nash Equilibria (NE) in a given game, and therefore the relative probabilities

of the social welfare values associated with those NE. We demonstrate how this allows

a modeler to use PGT to perform prediction and mechanism design in a manner that

is fully consistent with decision theory. We do this even in situations where conven-

tional approaches yield multiple equilibria, an ability that is necessary for a fully decision

theoretic mechanism design.

In the remainder of this section we motivate and describe the PGT approach in broad

terms. We then present a roadmap of the rest of the paper.

1By “all possible behavior” we mean all possible choice profiles. If players can only choose pure
strategies, it means all possible pure strategy profiles, while if they can randomize, it means all mixed
strategy profiles
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1.1 The predictive game theory approach

The traditional game theoretic approach to prediction is to choose some best-response

equilibrium concept that is appropriate for the scenario in question (e.g., Nash Equi-

librium in Nash (1959), Bayesian Nash Equilibrium in Harsanyi (1967), Markov Perfect

Equilibrium in Maskin and Tirole (1988) or Fairness Equilibrium in Rabin (1993)). How-

ever, research in behavioral game theory, particularly in empirical studies, suggests that

players are boundedly rational [see Arthur (1994); Conlisk (1996)].

With bounded rationality in mind, McKelvey and Palfrey developed the Quantal Re-

sponse Equilibrium (QRE) to provide predictions based on the concept of better-responses

rather than best-responses.

However all such predictions of behavior are point predictions, in that they pre-

dict the exact randomization each agent will use, and they assign probability zero to

all other randomizations. (In addition to equilibrium concepts like the NE and QRE

concepts, this is also true for “strategic thinking” concepts like Level-k-level thinking

[see Costa-Gomes and Crawford (2006)] or cognitive hierarchy models [see Camerer et al.

(2006)].) The situation is not as extreme with set-valued equilibrium concepts, like the

epsilon equilibrium of Radner. However even these concepts do not provide a probability

distribution over all possible behavior profiles. In particular, they do not give relative

probabilities of the behavior profiles in the equilibrium sets they predict. They also

implicitly maintain that all are other behaviors have probability zero, in manifest contra-

diction to the real world, where any behavior can occur with some non-zero probability.

If one wishes to predict some characteristic of interest y concerning some physical

system, based on some information I concerning the system, then statistics provides

many ways to convert such a I into a probability distribution over y. A priori, there

is no reason that this standard approach to predicting the behavior of physical systems

is not appropriate when the physical system in question is some human beings playing a

game. PGT is just that standard statistical approach to prediction applied to situations

where human beings are playing a game. The characteristic of interest, y, can be anything

from a mixed strategy profile q to social welfare w(q). In this paper, we generally regard

I as information about player utility functions and about player rationalities.

The Bayesian PGT approach starts with a prior distribution over behavior profiles.

This prior quantifies the modeler’s beliefs about the relative probabilities of different

mixed strategy profiles without regard to the strategic setting in question. As in Wolpert
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(2008), here we employ an entropic prior. Based on Shannon’s entropy [see Shannon

(1948)], this prior favors mixed strategy profiles that contain less information over those

that contain more information. It also embodies the principal of insufficient reason [see

Mackay (2003), Cover and Thomas (1991)].

The other modeling choice in the Bayesian PGT approach of this paper is to specify the

likelihood function. This is where information about the precise strategic environment

comes in to the modeling. In this paper we consider three likelihood functions. The

first, introduced in Wolpert (2008), is based on a logit quantal response. The second is

based on an epsilon equilibrium-like concept. A third likelihood function uses a concept

new to the game theory community, that we call “intelligence” Wolpert (2003). All

three likelihoods assign relative probabilities to all mixed strategy profiles on the basis of

information about player utility functions and about player rationalities. So while PGT

is a new positive approach to game theory, PGT modeling relies heavily on concepts that

already exist in the game theory literature. (In future work, we intend to consider more

experimentally-grounded likelihoods, incorporating concepts like focal points, symmetry,

equality and player honesty.)

Given a prior and likelihood, in Bayesian PGT they are combined in the usual way.

This specifies the posterior distribution over mixed strategy profiles conditioned on the

information about the strategic environment. This posterior is the focus of the PGT

analysis, as it is the source of all predictive information.

With each of the likelihood models we discuss, there is no closed form for the posterior

distribution. However modelers can apply well-known Monte Carlo techniques such as

accept-reject and importance sampling to this posterior, to estimate its important char-

acteristics [see Robert and Casella (2004)]. For example, we demonstrate how to estimate

the marginalizations of the posterior distribution over mixed strategies — which is just

the posterior distribution over pure strategies. We also show how to estimate the associ-

ated covariance over pure strategies. Similarly, we show how to estimate the distributions

over expected utility profiles and over social welfare.

The information provided by these characteristics of the PGT posterior have no real

analog in conventional equilibrium concepts like the NE or QRE. The closest analog with

those concepts arises when there is a unique equilibrium. In such cases one can, for ex-

ample, take the “distribution over expected utility profiles” to be a Dirac delta function

about the expected utilities at the equilibrium. However when there are multiple equilib-
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ria, one cannot even do this; there is not a meaningful way to assign relative probabilities

to expected utilities at the multiple equilibria. Yet without these probabilities it is not

possible to perform prediction or mechanism design in a manner that is compatible with

decision theory.

For real-world applications of mechanism design, the probabilities returned by a PGT

model allow the researcher to answer the basic types of questions that stakeholders need

answered. For example:

• “Which mechanism is most efficient?”

• “Which mechanism produces the least variance in efficiency?”

• “What is the probability that mechanism A produces greater welfare than mecha-

nism B?”

• “Which mechanism has a greater probability of producing welfare below x?”

Without a proper statistical model, these questions simply cannot be answered.

Though the PGT posterior contains far more information than does a single point

prediction, it can easily provide such a point prediction if desired. One ad hoc way to

make such a prediction is to return the global maximizer of the posterior distribution,

called the Maximum A Posterior (MAP) prediction (assuming that maximizer is unique).

However, how to distill a distribution to a point prediction is a choice ultimately made

by the modeler external to the game; it is not part of the game specification itself. PGT

enables the modeler to conform with decision theory when making this choice. To do so,

the modeler first needs to clarify her objective in making the point prediction. In general,

this objective can be interpreted as minimizing some real-valued loss function whose

arguments are the prediction and the actual outcome. In particular, Savage’s decision

theoretic axioms say that to make an optimal rational prediction, the modeler must choose

the prediction that minimizes expected posterior loss, where the expectation is taken

over the PGT posterior [see Savage (1954)]. For example, if the researcher uses an all-

or-nothing loss function, then the MAP is the prediction she should make. Alternatively,

for a quadratic loss function, the posterior mean is the appropriate prediction. Note that

regardless of the loss function, with PGT there is no equilibrium selection problem. In

general, the prediction that minimizes expected loss is unique.

There are many advantages of PGT that arise from its statistical nature. In particular,

with PGT we can incorporate other statistical information besides a conventional game
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specification in predicting player strategy profiles, by averaging over that information

to form the posterior over strategy profiles. For example, suppose the players know

another’s utility functions — but the modeler does not know those utility functions.

However say that the modeler has data from an experiment that says half of the players

have preferences I ′ and the other half have preferences I ′′. Then the modeler can

— indeed, should — account for her uncertainty by averaging over these preferences

in forming the posterior over mixed strategy profiles. In fact, any relevant information

of a statistical nature can be incorporated by averaging over it in the posterior. This

includes real-world and experimental data on preferences, focal points, rationality, etc. It

even includes information on the relative probabilities of various PGT likelihood models.

See Wolpert (2008) for more on the advantages of PGT over equilibrium concepts as a

way of modeling player behavior.

1.2 Roadmap of paper

We proceed as follows. First, we formally introduce the precise PGT approach investi-

gated in this paper. This includes a detailed description of three likelihood models and

an example that demonstrates how they compare. We briefly discuss the basic properties

of these models. Then we introduce our prior distribution based on Shannon entropy.

Next we introduce a simple Cournot duopoly setting. This setting serves as a backdrop

for the exposition of key PGT concepts. In particular we generate various PGT distribu-

tions for the Cournot setting, including posteriors for pure strategies, profits and social

welfare. We show how modeler uncertainty regarding utility information is seamlessly

accounted for due to the statistical nature of PGT. We also show that point prediction in

the PGT framework is a well-defined decision problem, because PGT formally quantifies

uncertainty over states of the world as a probability distribution. This contrasts with

the point prediction of conventional equilibrium-based approaches which do not provide

a distribution over all possible behaviors.

We introduce the benefits of applying PGT to the problem of mechanism design. We

show how PGT allows the social planner to formulate the mechanism design problem

as an exercise in decision theory — which is not possible in conventional mechanism

design based on equilibrium concepts. In this way, for the first time, PGT allows the

social planner to be fully rational, in the decision theoretic sense. We demonstrate PGT

mechanism design in the context of a production tax on the duopoly market and show
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that the PGT results contrast with QRE and NE.

The final section suggests a long list of future work, including PGT for mechanism

design, dynamic games and repeated games as well as games of imperfect information,

coalitional games and unstructured bargaining.

The appendix details our computational approach to sampling the posterior. This

involves generating random mixtures of Gaussian distributions. We also outline our

Monte Carlo procedures for estimating moments of the posterior. Here we include a brief

discussion of computational issues, including a density of states phenomenon that arises

as the complexity of the game grows.

2 The PGT Model

We are interested in formulating a distribution over the space of mixed strategy profiles.

The set of pure actions for player i is Xi. The set of mixed strategies for player i is ∆(Xi).

A generic element of ∆(Xi) is qi, a mixed strategy. The set of mixed strategy profiles is

∆X = ×i∆(Xi). A generic element of ∆X is q =
∏

i qi, a mixed strategy profile.

The central focus of the PGT approach, from which all predictive information is

derived, is the posterior distribution, P (q|I ), over mixed strategy profiles q ∈ ∆X :

P (q|I ) ∝ P (q)L (I |q), (1)

where P (q) is the prior distribution over mixed strategy profiles, I is information about

utility functions and L (I |q) is the likelihood of I given q.

2.1 Likelihood

The likelihood function, written L (I |q), gives greater weight to q’s that better coincide

with the utility information as determined by some external criteria. In general, that

criteria is a modeling choice left to the modeler because it largely reflects concerns specific

to the strategic environment of interest. In this paper, we focus on likelihoods that involve

quantifications of bounded rationality. Specifically, we develop three models that give

greater weight to q’s which reflect greater rationality by the players. The first model,

QR-rationality, is based on the idea of a logit quantal response. The second model,

N-rationality, says that the likelihood of a player choosing a specific qi when the other
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players choose q−i depends on how close the corresponding payoff is to the best response

payoff. This model is closely related to the epsilon equilibrium concept, as it uses the

perfectly rational payoff as a target. The third model, intelligence, says that the likelihood

of a particular qi given q−i depends on the proportion of strategies q′i that yield a lower

expected payoff than qi, given q−i. These three models are detailed below.

2.1.1 QR-rationality

In most games it is reasonable to think that players seek to maximize utility. However,

there are many reasons why an assumption of perfect rationality might not be suitable

for a given situation. Rather, we would like to incorporate some notion of bounded

rationality. Our first likelihood model, called QR-rationality (short for quantal response

rationality), incorporates bounded rationality by borrowing from the concept of a logit

quantal response. Under the logit quantal response, a player’s rationality is given by

the degree to which that player responds optimally to the other players’ strategies. This

degree of rationality is the criterion upon which our likelihood differentiates between q’s.

Before we formally introduce our measure of QR-rationality, we first need more no-

tation. Let U i
q−i

be the vector of expected utilities that player i gets from playing each

of his pure strategies against the mixture q−i. We call this player i’s environment. The

logit mixed strategy distribution for player i facing environment U i
q−i

is

LU i
q−i

,βi
(xi) ∝ eβiEq(ui|xi,j)

where Eq(ui|xi,j) is player i’s expected utility of playing his j’th pure strategy against the

mixture q−i. The constant βi is a measure of i’s rationality because as βi increases, the

mixed strategy L assigns greater probability to those pure strategies of i with greatest

expected utility. As shown in McKelvey and Palfrey (1995), as βi →∞, the logit mixed

strategy is a best response to q−i.

So given any q (with finite support), the question is how to calculate βi for each i. One

method of doing so is to find the βi that minimizes the Kullback-Leibler (KL) distance

from qi to the logit distribution parameterized by βi. The KL distance is a concept from

information theory that is used to measure the difference between two distributions [see
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Kullback and Leibler (1951); Kullback (1951, 1987)]. The KL distance is:

KL
(
qi(xi),LU i

q−i
,βi

(xi)
)

=
∑

xi,j∈Xi

q(xi,j) ln

(
q(xi,j)

LU i
q−i

,βi
(xi)

)

=
∑

xi,j∈Xi

q(xi,j) ln

(
q(xi,j)

∑
xi,l∈Xi

eβiEq(ui|xi,l)

eβiEq(ui|xi,j)

)
. (2)

By minimizing the KL distance from qi to the logit distrbution parameterized by βi,

we are finding the logit distribution that most accurately models qi in an information

theoretic sense. Then we borrow the common interpretation of βi as i’s rationality when

playing LU i
q−i

,βi
(xi) in response to q−i. This gives us the following characterization of

rationality.

Definition 2.1. The QR-rationality of qi against q−i is the value of βi that minimizes

the KL distance from qi to LU i
q−i

,βi
(xi), equation 2.

One potentially worrisome property of the QR-rationality parameter, that is also

shared by the logit-QRE, is that it is not invariant to positive rescalings of utility. In

other words, player QR-rationality parameters depend on units.

In the special case where q−i is such that all entries of U i
q−i

are identical, the QR-

rationality parameter βi can be any real number. This is the case in a mixed strategy

NE with full support, as the following example illustrates.

Example: Consider a mixed strategy NE in which each of two players randomize over 2

pure actions {x1, y1} for player one and {x2, y2} for player two with respective probabilities

(q, 1− q) and (p, 1− p). Theory states that move conditioned expected utilities must be

equal across any pure strategies that receive positive weight in an NE. Hence q might be

.0001, yet since the move conditioned expected utilities of x1 and y1 are the same, the

logit has no choice but to assign them both probability .5, and any β will work for that.

So even though (p, q) is a NE, β can be anything. This is because, according to QR-

rationality, a mixed strategy NE with full support is at once perfectly rational, irrational,

anti-rational and everything in-between ♦
For many settings, the set of q that feature the above problem is of zero measure

in ∆X . This means that when randomly sampling the posterior, as is outlined in the

appendix, the above anomaly will not be an issue. However, for completeness we define

βi = ∞ when q−i is such that all entries of U i
q−i

are identical. In other words, when i is
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indifferent among his pure strategies, he is perfectly rational by default.

The next question is, given the choice QR-rationality to measure how smart players

are, what should the functional form of the likelihood L (I |q) be? In other words, in

the absence of data about the particular human beings playing a game, how strongly

do we believe they are likely to be smart, as measured by QR-rationality? One simple

parameterized form is the following:

L (I |q) ∝
∏

i

[tanh(βi(q)) + 1]αi (3)

where each αi measures how much more likely i is to be smart rather than dumb. Phys-

ically, L (I |q) quantifies how likely it is that out of all games a set of real-world players

could have just played, that they played the game with utility information I , given that

they chose joint mixed strategy q when they played that game.

When looking at equation 3, it may be tempting to think of it as a type of averaging

of QRE’s. This is not the case. Rather, not every q ∈ ∆X is a QRE for properly chosen

β. That’s because equation 3 is defined for every q, while only an infinitesimal subset of

product distributions are logit distributions.

It should be emphasized that 3 is not the only reasonable choice for a QR-rationality

likelihood.2 This is just like in statistics in general (and econometrics in particular).

When predicting player behavior in a game, ultimately the modeler must choose how to

quantify their insight into how the system’s state is related to what information they

have concerning it, in terms of a likelihood.

The likelihood in equation 3 produces the following likelihood ratio

L (I |q)
L (I |q′) =

∏
i[tanh(βi(q)) + 1]αi

∏
i[tanh(βi(q′)) + 1]αi

.

This ratio is unchanged by removing mixed strategy profiles q′′ 6= q or q′ from the under-

lying space ∆X . That is because the quantity L (I |q) from equation 3 does not depend

2For example, one could use L (I |q) is:

L (I |q) ∝
∏

i

gi(βi(q)) (4)

where

gi(βi(q)) =

{
αi ln(βi(q) + 1) + 1 if βi(q) ≥ 0
eαiβi(q) otherwise.
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on the set of possible q’s. In addition, because β is not invariant to affine transformations

of utility, neither is the likelihood ratio.

Since we are using KL rationality, the choice of the form of the likelihood function

has implications for the convergence rate of Monte Carlo estimates of the posterior. This

is because the QR-rationality parameter, βi, can diverge to infinity for qi that are best

responses to q−i. Infinite values of β are unlikely a problem in practice because best

response correspondences are often of measure zero in the space of ∆(Xi). However,

large β are quite possible. Therefore, if L (I |q) is unbounded as β(q) grows, Monte

Carlo estimates of the posterior may never converge.

Ultimately, the QR-rationality likelihood describes the underlying distribution of QR-

rationalities in the set of players. The true distribution cannot be known with certainty,

so any functional form will be wrong. The important point is that a non-degenerate

distribution over rationalities is, in many settings, an improvement over an assumption

of perfect rationality (as in NE) or a point mass assigned to a specific imperfect rationality

(as in QRE). These settings include those for which learning has not yet converged to

equilibrium, multiple equilibria exist, or computational complexities are involved (which

covers most real-world settings).

2.1.2 N-rationality

Similar to QR-rationality, N-rationality says that the likelihood of qi given q−i increases

as qi gets closer to a best response. The difference is how we measure the distance to

a best response. With N-rationality we borrow from the epsilon equilibrium concept to

say that players differentiate between responses according to the payoffs they generate.

Therefore, we measure the rationality of qi given q−i as the normalized distance between

the payoff yielded by qi and the payoff yielded by i’s worst response.

Definition 2.2. The N-rationality of qi against q−i is the normalized distance from the

payoff to qi to the payoff from i’s worst possible response. Alternatively,

ηi(q) =
Eq(u

i)−minxi
[U i

q−i
(xi)]

maxxi
[U i

q−i
(xi)]−minxi

[U i
q−i

(xi)]

where minxi
[U i

q−i
(xi)] is the minimum expected utility achievable by player i when the

other players are randomizing according to q−i, and maxxi
[U i

q−i
(xi)] is similarly defined.
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The following are is a general form of L (I |q) based on N-rationality.3

L (q) ∝
∏

i

ηi(q)
αi (5)

Note that this formulation gives a likelihood ratio L (q)
L (q′) that is invariant to affine

transformations of utility. It is also invariant to the deletion of strategies q′i ∈ ∆i(Xi)

except the minimizers and maximizers. It should again be noted that choosing a specific

functional form for the N-rationality likelihood is subject to the same considerations as

were mentioned with respect to QR-rationality.

When using N-rationality the modeler must be careful that U i
q−i

is bounded for every

q−i. If one entry of U i
q−i

diverges, then N-rationality is not well-defined. Take for example

a first price auction with 2 players where x ∈ R2
+ is the profile of bids and v ≤ ∞ is

the profile of valuations. If the modeler wants to use N-rationality here, then she cannot

specify that Ui(xi, x−i) = vi−xi whenever xi > xj for all x. This is because if i is allowed

to bid an infinite amount, then the minimum entry of U i
qj

is negative infinity for every

“reasonable” qj (i.e. qj in which there exists some number N such that qj(n) = 0 for all

n ≥ N ) and undefined for other qj.

2.1.3 Intelligence

As an alternative to the rationality criteria outlined above, an intelligence criterion is

useful in capturing the relative likelihood of coming across good responses in a random

search of one’s strategy space.

Definition 2.3. The intelligence of qi against q−i is the proportion of q′i ∈ ∆(Xi) such

that Eq(ui|qi) ≥ Eq(ui|q′i). Alternatively,

ξi(q) =

∫

q′i∈∆(Xi)

dq′if(qi)I(Eq(ui|qi) ≥ Eq(ui|q′i)) (6)

where I(a ≥ a′) is the indicator function that returns one if the argument is true and

zero if it is false and f(qi) = 1 is the area of the simplex ∆(Xi) [see Wolpert (2003)].

3Another example is
L (q) ∝

∏

i

tanh (αiηi(q))
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The intelligence of q is defined as the vectors of intelligences of each qi against q−i

individually. We suggest one approach to estimating intelligence by importance sampling

∆(Xi) that is general enough to be applied to any game. However, more efficient methods

for calculating intelligence in closed form may be available depending on the details of

the game in question (see matching pennies example below).

Since it occurs in the associated likelihood function, we will want to estimate the

integral 6 to investigate that likelihood. One way to do that is with Monte Carlo esti-

mation. To do this we will choose a sampling density h(·) with full support on ∆(Xi).

In our case, a sufficient condition for obtaining a finite variance estimator [see Geweke

(1989)] is that 1
h(qi)

is bounded for all qi ∈ ∆(Xi). (Formally, this is true because ∆(Xi)

is compact, varf (I(·)) is bounded, and because our target density f(qi) is uniform, it is

therefore bounded over ∆(Xi). )

Having selected a suitable distribution h(·), we can form T i.i.d. samples {q′i,t}T
t=1.

The estimate of intelligence is then:

ξi(q) = Ef (I(·)) ≈ 1

T

T∑
t=1

I(Eq(ui|qi) ≥ Eq(ui|q′i,t))
h(qi)

.

Repeating the above procedure for each player i yields a vector of player intelligences,

ξ(q), where ξi(q) is the estimated intelligence of qi. As usual, we want the likelihood

function to assign more weight to q than q′ if and only if q is more intelligent than q′.

For example, the intelligence analog to equation 5 is

L (I |q) ∝
∏

i

ξi(q)
αi . (7)

The likelihood ratios L (q)
L (q′) for the likelihood in equation 7 are invariant under affine

transformations of utility. However, it is clear from the definition of intelligence that the

likelihood ratio between q and q′ does not remain unchanged when deleting q′′ from ∆X .

Just as the choices of likelihood function for QR-rationality and N-rationality depend

on the specifics of the strategic setting, so does the choice of likelihood function for intel-

ligence. Ultimately, the likelihood implies a distribution over intelligence or rationality.

For intelligence, this distribution is given by

P (ξ̂|I ) =

∫

∆X
I(ξ(q) = ξ̂)L (I |q)dq (8)
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where I(a = a′) is the indicator function that returns one when the argument is true and

zero otherwise. Therefore, changes in the likelihood imply changes in the distribution of

intelligence or rationality.

2.1.4 Example: comparing likelihood criteria

The following example illustrates the difference between QR-rationality, N-rationality,

and intelligence.

Consider zero-sum matching pennies, where player 1 wants to match and player 2

wants to mismatch. Assume the environment where player 1 randomizes with q1 = .25.

Then for any given q2, the proportion of alternatives q′2 ∈ [0, 1] that give expected utility

less than or equal to q2 is simply q2. In other words, when q1 = .25, the intelligence of q2

is ξ2(q) = q2. If q1 increases to q′1 = .4, the intelligence of q2 is still ξi(q) = q2.

Now consider QR-rationality in both cases, q1 = .25 and q′1 = .4. In the first case,

where q1 = .25, β2(q) solves

q2 =
exp[β2(−.25 + .75)]

exp[β2(−.25 + .75)] + exp[β2(.25− .75)]

and in the second case, where q′1 = .4, β2(q) solves

q2 =
exp[β2(−.4 + .6)]

exp[β2(−.4 + .6)] + exp[β2(.4− .6)]

Now consider N-rationality in both cases. In the first case, where q1 = .25 we have

η2(.25, q2) =
q2

2
.

In the second case, where q′1 = .4, we have

η2(.4, q2) = .2q2.

In both cases, q1 = .25 and q′1 = .4, intelligence equals ξ2(q) = q2. However, QR-

rationality, β2(q), changes when q1 changes from .25 to .4. Whether β2(q) increases or

decreases depends on the value of q2. N-rationality also changes when q1 changes from

.25 to .4, but the direction of the change is certain. It decreases.
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2.2 Prior

The role of the prior distribution, P (q) is to quantify the modeler’s subjective beliefs

about the relative probabilities of mixed strategy profiles without regard to the utility

information used by the likelihood function, L (I |q). At first glance, the task of formu-

lating any beliefs about a distribution of mixed strategy profiles without the benefit of

utility information may seem difficult and/or unproductive.

However based on any of several separate sets of simple desiderata, there is a unique

real-valued quantification of the amount of syntactic information in a distribution q(x)

[see Shannon (1948), Mackay (2003), Cover and Thomas (1991)]. That quantification, the

Shannon entropy of a density q, is written as S(q) = −∑
x q(x) ln(q(x)). The entropic

prior density is written as P (q) ∝ exp(δS(q)) for real-valued parameter δ.

For δ > 0, the entropic prior assigns greater probability to mixed strategy profiles that

are more diffuse. This is attractive from a modeling perspective because it represents an

agnostic way of differentiating between q’s that have the same likelihood. More precisely,

say we have two mixed strategy profiles, q and q′, that have the same QR-rationality, and

therefore the same likelihood. With δ > 0, the posterior then favors the mixed strategy

profile that has a smaller influence on the distribution over the support of the q’s,

P (x|I ) =

∫

q

q(x)P (q|I )dq. (9)

Alternatively, setting δ < 0 has an important behavioral interpretation. If, for ex-

ample, the researcher believes that human beings are particularly poor at randomizing,

then such a specification will reflect this by giving greater weight to q’s that are “less

random.” We can call this the anti-entropic prior.

Naturally, the entropic prior and anti-entropic prior can be combined. To be clear,

suppose δe > 0 is the parameter for the entropic prior, and δa < 0 is the parameter for the

anti-entropic prior. Then the combined prior is P (q) ∝ k exp(δeS(q))+(1−k) exp(δaS(q)).

In this way the researcher expresses that her prior beliefs involve ambiguity in addition to

uncertainty. This ambiguity says that the researcher is uncertain about her prior beliefs.

She believes with probability k that her beliefs should be modeled by the maximum

entropy principal, and with probability (1 − k) that they should be modeled by human

beings’ general lack of skill in randomizing.

The entropic prior is not the only candidate for prior distribution. Indeed, it just
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one member of the Cressie-Read family of distributions [see Cressie and Read (1984);

Read and Cressie (1988)]. However, we adhere to the entropic prior (δ > 0) as it is

consistent with the principle of maximum entropy [see Jaynes (1957)], which can itself

be derived from the principal of insufficient reason [see Jaynes (2003)]. The principle of

insufficient reason tends that when faced with a set of possibilities that are indistinguish-

able based on the data at hand, each possibility should be equally likely [see Poincare

(1912)]. The entropic prior upholds that principle because it says that for a given β̂ the

mixed strategy profile q that comes closest to putting equal weight on each pure strategy

(i.e. maximizes entropy), subject to β(q) = β̂, is the most likely.

3 Cournot Duopoly

Here we introduce a familiar strategic setting, the Cournot duopoly, for the purpose

of demonstrating the models and techniques of the previous section. We also use the

Cournot setting to compare our models with NE and QRE predictions. Finally, we will

discuss mechanism comparison under the PGT approach by introducing an externality

to the duopoly market and comparing outcomes under various tax rates.

The Cournot duopoly we use is standard. There are two firms, A and B, that produce

goods A and B respectively. They each decide simultaneously how much of their own

good to produce. The produced quantities are xA ∈ XA = [0, x̄A] and xB ∈ XB = [0, x̄B],

where x̄i is the maximum quantity that firm i can produce and X = XA×XB. The price

that each firm receives for its own good is determined by market demand. Market demand

for firm i’s product is decreasing in both xi and xj, where i 6= j. That is, the price that

firm i can charge for good i decreases as the quantity of good i and the quantity of good

j increase. We write this price as Di(xi, xj) with the assumptions Di(xi, xj) ≥ 0, ∂Di

∂xi
≤ 0

and ∂Di

∂xj
≤ 0 for all (xi, xj) ∈ X. The total cost for either firm i of producing xi units of

good i are given by Ci(xi) with the assumptions Ci(xi) ≥ 0, ∂Ci

∂xi
≥ 0 and ∂2Ci

∂x2
i
≥ 0 for all

xi ∈ Xi. Therefore, firm i’s profit function is written as Πi(xi, xj) = xiDi(xi, xj)−Ci(xi).

For illustrative purposes, we study this model for specific parametric forms of Di(·, ·)
and Ci(·) for i = A, B. The form for Di(·, ·) is

Di(xi, xj) =





di1 − di2xi + di3x
2
i − di4x

3
i − xj, if greater than zero

0, otherwise
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where −di2 + 2di3xi− 3di4x
2
i ≤ 0 for all xi ∈ Xi ensures that ∂Di

∂xi
≤ 0. The form for Ci(·)

is

Ci(xi) =
exi

ci1

.

These parametric forms allow us to describe a very broad range of strategic settings

while remaining clear and concise in our descriptions. For example, the parameters

[x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 = 0.0025; ci1 = 16, 000, 000] for i = A,B

produce the symmetric best response functions, x∗i (xj), in figure 1 below. In this example
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x
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Figure 1: Best response functions for x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 =
0.0025; ci1 = 16, 000, 000 for i = A,B.

there are five intersections of the best response functions, indicating five pure strategy

NE.

Changing the parameter dA1 from 20.4 to 19.1 drastically changes the set of equilibria

without drastically changing firm A’s profit function. This situation is depicted in figure

2.

Finally, a completely new set of parameters [x̄i = 9; di1 = 7.1; di2 = 0.8; di3 =

0.15; di4 = 0.0125; ci1 = 401.7] for i = A,B drastically changes the set of NE and their

relative locations. This is depicted in figure 3 below.
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Figure 2: Best response functions for the same parameters as in figure 1, except that
dA1 = 19.1 instead of 20.4.

We use these three strategic settings (i.e., three parameter vectors) as illustrative tools

in discussing the results below. We refer to each by its corresponding figure number 1, 2

and 3 respectively.

4 Results

In order to make predictions about the outcome of our Cournot duopoly, we need to know

P (x|I ) from equation 9, the posterior probabilities of each of the pure strategy profiles.

More generally, researchers may want to know the expected value of any function f(q) of

the players’ strategies

E[f(q)] =

∫

∆X
f(q)P (q|I )dq. (10)

This includes expected profits, expected welfare, expected covariance, etc.

Unfortunately, we cannot evaluate the posterior in closed form for any of the likeli-

hoods discussed in this paper. Therefore, we must numerically estimate it. We use the

Monte Carlo method of importance sampling to do so. Importance sampling relies on
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Figure 3: Best response functions for x̄i = 9; di1 = 7.1; di2 = 0.8; di3 = 0.15; di4 =
0.0125; ci1 = 401.7 for i = A,B.

taking draws from a known distribution H(q) in order to estimate an unknown distribu-

tion P (q|I ). This means we need a population of mixed strategy profiles, q’s, from the

space of mixed strategy profiles, ∆X .

In the Cournot duopoly application, quantities, xi, can take on any value in the

interval [0, x̄i] for i = A,B. So a single qi is a vector of infinite length. For obvious

computational reasons, we cannot work directly with such vectors. Therefore, we need

to discretize the space of mixed strategy profiles. That is, the actual value of E[f(q)] is

an integral over an infinite-dimensional space, ∆X , but we want to estimate this integral

over a finite-dimensional space. However, we must be careful to do so in a way such that

our estimate of the posterior approximates the actual posterior.

Our solution is to form a population of q’s by randomly drawing mixtures of Gaussian

distributions. The details of our sampling procedure are given in the appendix. The

appendix also describes how we estimate the integral in equation 10.

As described above, P (x|I ) gives the posterior density over the space of pure strategy

profiles, X. For the Cournot setting in figure 1, P (x|I ) is given below in figure 4 for
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QR-rationality and figure 5 for N-rationality.4
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Figure 4: The PGT posterior over x’s from the QR-rationality model with parameter
α = 4. Cournot parameters are x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 =
0.0025; ci1 = 16, 000, 000 for i = A,B.

The issue of which likelihood to use, QR-rationality, N-rationality or intelligence, is

similar to the issue of which equilibrium refinement to use. The answer depends on

the setting in question. Ultimately, experiments and real-world data must decide which

likelihood is best for the given setting. However, here we are merely illustrating results

for some choices of likelihood, in a way that is similar to illustrating results for some

choices of equilibrium refinement.

It is important to note that, with PGT, modelers are not constrained to make a

hard choice among the likelihoods presented here. Because the PGT approach is fully

4Since the Cournot game move space is uncountable, the space of q’s is infinite-dimensional. This
means that our intelligence measure as discussed above is not well-defined. For that reason, we do not
present a distribution over move profiles based on the intelligence likelihood.
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Figure 5: The PGT posterior over x’s from the N-rationality model with parameter
α = 15. Cournot parameters are x̄i = 20; di1 = 20.4; di2 = 2.165; di3 = 0.12; di4 =
0.0025; ci1 = 16, 000, 000 for i = A,B.

statistical, it is trivial to combine likelihood models to reflect the modeler’s uncertainty

about which model is best in a given situation. When such uncertainty exists, the modeler

can assign convex weights to each likelihood. The weights represent her beliefs about the

relative explanatory power of each model. Then the full model is a weighted combination

of the component models.

In the same way that we can express model uncertainty by combining different like-

lihoods, we can express uncertainty over firm profit functions by averaging over profit

functions. To illustrate this, let k be the probability that the profit function parame-

ters are those depicted in figure 1 (I ′), and let 1 − k be the probability that the profit

function parameters are those depicted in figure 2 (I ′′). Recall that I ′ has five NE,

and I ′′ has only one. Loosely speaking, by using PGT we can average those two sets of

utility information to capture modeler uncertainty. Formally, we write I = {I ′,I ′′}
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Figure 6: QR-rationality PGT distribution over moves when modeling modeler uncer-
tainty about firm A’s profit function (α = 2.75).

and break the likelihood into two parts:

L (I |q) = kL (I ′|q) + (1− k)L (I ′′|q).

Figure 6 depicts a combination of I ′ and I ′′ with k = .5 under the QR-rationality

likelihood.

This averaging out modeler uncertainty over utility functions can be applied to any

information concerning utility function values, I . Note that we are concerned here with

the modeler ’s uncertainty of the utility functions. (Since the players have complete infor-

mation in the Cournot game scenarios we are analyzing, they have no such uncertainty.)

It is not clear how one might address such uncertainty using conventional equilibrium

concepts. There does not seem to be a statistically meaningful way to combine the five
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NE of I ′ with the one NE of I ′′.

4.1 Correlation of pure strategies

Despite the fact that each q ∈ ∆X is a product distribution, P (x|I ) is generally not

a product distribution. Therefore, there is coupling between xA and xB under P (x|I ).

This coupling of pure strategies is different than the correlation that arises in a correlated

equilibrium [see Aumann (1974)], as the result of learning, or as the result of pre-play

communication. The coupling between xA and xB that arises in P (x|I ) is the result of

averaging over P (q|I ). That is, there is coupling between the players’ pure strategies

from the researcher’s perspective because she is averaging over all q’s. However, there is no

coupling between the player’s pure strategies from the players’ perspective because they

choose their strategies independently, i.e. each q is in the space of product distributions.

As an example, consider an industry comprising many firms, where the firms repeat-

edly play two-player games with one another. Say that a regulator of that industry

observes the joint moves of many different pairs of firms engaged in such two-player

games. Then even if there is no collusion – in each game, the moves of the two firms

are independent – to the regulator it would appear as though there is collusion in the

industry.

Consider the duopoly setting from figure 1 with the QR-rationality likelihood where

α = 4. Our estimate of the correlation between xA and xB is small in magnitude, just

−0.002, yet it is statistically significant at the 95% level. Changes to the likelihood, such

as an increase in α, can increase the magnitude of this correlation. For instance, by

setting α = 100, we increase the correlation to 0.095. Naturally, the utility information

also affects the degree of coupling in P (x|I ). For the duopoly setting from figure 2 with

α = 100, the correlation is −0.062.

Alternatively, a QRE is, by definition, a product distribution. Hence it does not

exhibit coupling between xA and xB. For comparison with the PGT distributions, we

present in figure 7 the QRE distribution for the duopoly setting from figure 1. Recall

from equation 8 that the likelihood function implies a distribution over rationality or

intelligence. For the PGT distribution from figure 4, we find that the mean of the

implied distribution over QR-rationality is approximately 0.2.5 Therefore, we use β = 0.2

5For more on the distribution over QR-rationality and how it relates to a density of states phenomenon,
please see appendix C
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Figure 7: QRE distribution of moves with β = 0.2.

to generate the comparison QRE distribution in figure 7.

4.2 Predicting outcomes

A point prediction is merely a choice under uncertainty made by a modeler. There is

a decision theory for making rational choices under uncertainty that is well-founded on

basic axioms of rationality [see von Neumann and Morgenstern (1947); Savage (1954);

Luce (1959)]. Game theoretic predictions should also adhere to decision theory if they

are to be rational. By providing a probability distribution over behavior, PGT enables

the modeler to use decision theory to make rational predictions.

To start, we need those elements of a decision under uncertainty that are prescribed

by decision theory:

1. a set of alternatives - the set of mixed strategy profiles

2. a probability distribution over states of the world - the PGT posterior
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3. an objective - a quantification of the modeler’s preferences (i.e. a loss function)

While the objective and the set of alternatives are often determined by the statement of

the research problem, the probability distribution over states of the world is precisely the

reason we consult a model. If the model does not produce such a probability distribution,

then we cannot properly use it for prediction.

Since the PGT approach yields a distribution over alternatives, q’s, we can use it to

make a rational prediction. Suppose a modeler wants to predict the quantities (xA, xB)

that will be played in the Cournot duopoly. Suppose further that this modeler has a loss

function. This loss function is not defined as a part of the game in question. Rather it

is specified by the modeler to quantify the penalty she suffers for predicting x′ when the

realized profile is x. There are many ways to quantify this penalty. All-or-nothing loss

functions report a zero when x′ = x and one otherwise. They are primarily appropriate

when the modeler cares only about predicting the exact outcome, and proximity does

not matter. In the Cournot duopoly example, quantities can take on any values between

zero and x̄i. Therefore, the probability of predicting the exact outcome is very low,

suggesting that an all-or-nothing loss function may not be appropriate for the Cournot

setting. However, if the modeler does apply an all-or-nothing loss function to the Cournot

setting, she should choose the most likely quantity profile. With the PGT posterior, the

most likely profile is the maximum a posteriori (or MAP) prediction, and is given by:

x∗ = argmax
x′

∫

q

q(x)P (q|I )dq = P (x|I ).

We can easily apply this loss function to the Cournot duopoly setting depicted in figure

1 or its slight variation in figure 2. Under the QR-rationality likelihood, the MAP from

the first setting is approximately (4.5, 4.5), while the MAP prediction from the second

setting is approximately (10, 2).

Other loss functions, such as the quadratic loss function, penalize based on the dis-

tance between x′ and x. Therefore quadratic loss function may be appropriate when a

modeler prefers a close prediction to a far-off prediction even when the close prediction

is still not quite equal to the realized value. Suppose our loss function is quadratic,

L(x, x′) = ||x′ − x||2, where x′ is the predicted profile and x is the realized profile. Then

25



by decision theory, the modeler’s prediction should be

x∗ = argmin
x′

∫

q

q(x)||x′ − x||2P (q|I )dq.

Using QR-rationality, and applying the quadratic loss function to the Cournot duopoly

example depicted in figure 1, we predict x∗ ≈ (8.97, 8.97). For the slight variation in

figure 2 we predict x∗ ≈ (9.4, 8.6).

We can contrast the above predictions with the NE and QRE counterparts. The

Cournot duopoly setting from in figure 1 yields a QRE expected quantity profile of

approximately (7.4, 7.4) (for β = 0.2), and a set of pure NE profiles

{(16.6, 0.95), (10.2, 3.1), (5.6, 5.6), (0.95, 16.6), (3.1, 10.2)}.

The QRE prediction is less than the PGT prediction. It is not possible to compare the

PGT and NE predictions because there are multiple NE. However, we do note that the

total output predicted by the PGT model is greater than the total output under any pure

NE.

The example depicted in figure 2 yields a QRE expected quantity profile of ap-

proximately (6.3, 8.2) and a unique pure NE profile of (0.55, 16.8). The fact that both

equilibrium-based predictions have firm B producing more than firm A is in stark con-

trast to the PGT predictions, where firm A produces more than firm B. The divergence

between PGT predictions and their equilibrium-based counterparts arises because the

prior and likelihood assign nonzero weight to more than one q. This is precisely the

reason that PGT prediction a well-defined decision problem.

Finally, we note that sometimes the researcher may be interested in predicting mixed

strategy profiles rather than pure strategy profiles. This may be the case when the re-

searcher is attempting to choose among several mechanisms to implement and cares about

the distribution of pure strategies the players will employ rather than the outcome of any

one instance of the game. The mechanics of prediction are the same in both situations.

The only difference is that we use P (q|I) instead of P (x|I), and the researcher’s loss

function must be defined for q’s rather than for x’s. Otherwise, the researcher minimizes

expected posterior loss in precisely the same way.

26



4.3 Mechanism Design

Given the above, there is no reason that we need to abandon decision theory when

deciding among mechanisms to implement. This is one area in which the PGT approach

opens a whole new level of analysis.

Consider, for example, the decision that a social planner faces when choosing a tax

level for regulating a duopoly market with negative externalities. For simplicity, assume

that there are two possible taxes that the social planner has to consider, τH and τL. Let

wk(q) stand for social welfare (the social planner’s objective function) at tax level k. If

there are unique NE qH∗ and qL∗ under the respective taxes, and the players are known to

be fully rational, then using conventional game theory, the social planner decides between

τH and τL by comparing wH(qH∗) and wL(qL∗).

If there are multiple equilibria, or if the social planner has any uncertainty about the

players’ rationality (or payoffs), then the social planner simply cannot use such equilib-

rium approaches to make a rational decision. This is because equilibrium concepts do

not provide a probability distribution over the multiple equilibria, so the social planner

cannot compute expected welfare as decision theory prescribes.

To choose a mechanism using a PGT model, simply select the mechanism, m, that

maximizes expected social welfare over the corresponding posterior. In the context of

our duopoly market, consider the scenario represented by the best response functions in

figure 3. We model a simple negative externality in this market by assuming external

costs equal to EC(x) = e1x.6 We also assume that the social welfare function equals firm

profits plus tax revenue minus external costs. For a given behavior, q, and tax level k

this is:

wm(q) = Eq[πA + πB] + Eq[xA + xB] (τm − e1) .

Averaging the social welfare function for each tax level over the posterior, we deter-

mine the expected welfare of each tax level. This is written

Em[wm(q)] =

∫

q

wm(q)Pm(q|I )dq.

Suppose τH = 4 and τL = 2. Then for our example, E[wL(q)] ≈ 6.1 and E[wH(q)] ≈ 5.2.

Without taxes, expected social welfare is E[w0(q)] ≈ −0.3. Hence, the social planner

can choose the tax rate that yields greatest expected social welfare, τL. Note that,

6For more on equilibrium analysis of Cournot efficiency see Seade (1985)
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because we are taking an expectation of social welfare over all behavior according to the

distribution Pm(q|I ), the optimal mechanism may be very different from the mechanism

that corresponds to the equilibrium with the highest social welfare. In other words, we

may have

EL[wL(q)] > EH [wH(q)],

even though there are equilibria qH∗ and qL∗ such that wH(qH∗) > wL(qL∗). The implica-

tion is that a conventional approach to mechanism design ignores potentially consequen-

tial uncertainty about which strategies will be used.

There is also a subtle implication for risk aversion here. Suppose

g(wm(q)) = (wm(q))r = (Eq[πA + πB] + Eq[xA + xB] (τm − e1))
r

where r ∈ [0, 1]. This says that if the social planner knows the behavior qm that each

mechanism m will elicit, then she will simply choose the mechanism that maximizes

wm(qm). However, if she is uncertain about which behavior qm will be elicited by mech-

anism m, then she can be risk averse. In other words, even if the social planner is not

averse to the risk that a given behavior will produce bad outcomes, she may still be

averse to the risk that the mechanism will systematically elicit bad behavior. Modeling

the social planner’s objective this way is particularly appealing in the case of a major

market change like new taxes. Major market changes are the result of costly legislative

processes, and are often very difficult to retract once in place. Therefore, a social planner

may be averse to the risk that firms engage systematically in behavior that is detrimental

to her objective. She may prefer a mechanism that produces a lower expectation of w(q)

with a tighter distribution rather than a mechanism that produces a higher expectation

of w(q) with a broader distribution.

Using PGT and standard decision theory, the social planner fully accounts for un-

certainty when choosing mechanisms. She has a complete decision framework. If she

finds that a particular PGT model does not incorporate relevant behavioral considera-

tions, such as truth-telling, market exit/entry decisions, etc., then she simply quantifies

these considerations and expands the PGT model to include them. In this way, the PGT

approach, like all statistical modeling, is completely modular.

Because a PGT model produces a distribution over behavior profiles for each tax

scheme, it also produces a distribution over the value of the social planner’s objective for

28



each tax scheme. These distributions allow us to fully compare mechanisms by answering

basic questions that real-world stakeholders ask. For instance,

• “Which of the taxes has greatest expected social welfare?”

• “Which of the taxes produces greater variance in welfare?”

• “What is the probability that τH produces greater welfare than τL?”

• “Which of the taxes has a greater probability of producing welfare below some

threshold value?”

Such questions simply cannot be answered using conventional approaches. Therefore,

when advising a regulator on which tax to implement, we must use PGT.

Using the duopoly setting from figure 3 we get the posterior distributions over social

welfare, w(p), from τ0 (i.e. no tax), τL and τH . These are displayed in figure 8. There are

several features of these distributions to note. First, the high tax level τH = 4 produces

a strongly bi-modal distribution that leads to the highest variance in social welfare. The

high tax level gives both the highest probability of low social welfare (below −5) and the

highest probability of high social welfare (above 20). These features of the τH distribution

of social welfare mean that a risk averse social planner is unlikely to select the high tax

level.

The low tax level, τL = 2, distribution over social welfare very nearly first-order

stochastic dominates the zero tax distribution. Hence, it is unlikely that any social

planner, no matter how risk averse, will ever choose zero tax. The low tax level also

clearly gives the lowest probability of social welfare less than zero. This obviously means

it gives the highest probability of social welfare greater than zero (i.e. loss avoidance). It

also gives the highest probability of social welfare greater than 10.

Figure 8 also shows that NE and QRE expected social welfare is greatest for the

high tax level, τH . However, as mentioned above, PGT expected social welfare is greatest

under the low tax level, τL. Like the differences between PGT predictions and equilibrium-

based predictions, this difference stems from the fact that PGT gives non-zero weight to

multiple q’s. Therefore, PGT expected social welfare is averaged over these multiple

mixed strategy profiles, while with equilibrium-based approaches, expected social welfare

comes from a single mixed strategy profile.

Finally note that because the mechanism design problem is couched fully within deci-

sion theory, it is straightforward to introduce constraints. For example, the social planner
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Figure 8: PGT (QR-rationality, α = .75), QRE (β = .5) and NE distributions over
expected welfare for tax rates 0, 2 and 4.

may not want to choose a mechanism for which the probability that firms make negative

profits is greater than lower bound. To work with such a constraint, we must know the

distribution of expected profits. With PGT, the information is readily available, and we

display it in figure 9 for the duopoly setting from figure 1 with α = 4.

Using the distribution of expected profits, it is straightforward to calculate the prob-

ability that the firms will both achieve some minimum profit, the probability that they

will together achieve some minimum aggregate profit, or any other quantity of interest.

Making these calculations for each mechanism further informs the social planner for the

purpose of mechanism comparison.

30



Firm A Profits

F
irm

 B
 P

ro
fit

s

 

 

−5 0 5 10 15 20 25
−5

0

5

10

15

20

25
PGT Profit Distribution
QRE Profit
PGT Expected Profit
NE Profits

Figure 9: PGT distribution of profits versus NE profits, QRE profits, and PGT expected
profits.

5 Future Work

PGT is an important step forward for game theory. By definition, PGT puts a probabil-

ity distribution on all states of the world. Therefore, when the goal is prediction and/or

mechanism design, PGT is the only approach that is compatible with decision theory.

It allows for any degree of uncertainty with respect to payoff functions and model spec-

ification. It also seamlessly incorporates the important and growing body of data from

the behavioral economics literature. In many cases, PGT models can be formulated to

recover a statistical analog of conventional equilibrium concepts (i.e. likelihood assigns

zero weight to non-NE q’s).

There is a long list of additional issues yet to be fully addressed. In this paper we

focused on the simplest formulation of PGT, a one-shot simultaneous-move game. How-
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ever, the PGT approach translates directly to repeated and dynamic games. Future work

should develop models for such situations, potentially allowing for learning. To be suc-

cessful, such work must also focus on computational issues. Of primary importance is

a “density of states phenomenon” that arises in the space of product distributions. In

particular, as ∆X becomes larger, highly intelligent and/or rational q’s are drawn less

frequently from the proposal distribution, H(ρ, µ, Σ), that we describe in the appendix.

Dynamic games naturally increase the dimensionality of the players’ strategy spaces and

therefore the dimensionality of ∆X . As the dimensionality increases linearly, the conver-

gence rates of our Monte Carlo estimations slow exponentially.

Although we described the way in which modelers can incorporate their own uncer-

tainty regarding player payoffs into PGT, we avoided modeling each player’s uncertainty

about her opponents’ payoff functions. This will be an important issue going forward,

as most real-world settings involve such uncertainty. To predict behavior and choose

mechanisms in such settings, we must have a PGT model that treats this uncertainty

directly.

The PGT approach should also be adapted to coalitional and unstructured bargaining

situations.7 Like noncooperative games, conventional coalitional and unstructured bar-

gaining models have focused on analytic or set-valued solutions rather than prediction.

Therefore, they share the same shortcomings in terms of prediction and mechanism de-

sign. We anticipate that advances in this direction will borrow from existing ideas, such

as the core and Shapley Value [see Aumann (1961); Shapley (1953)], in much the same

way the analysis of this paper borrowed from QRE and epsilon-equilibrium.

Finally, the mechanism design problem discussed above was relatively simple because

there were only three possible taxation levels.8 In general, the problem will be to describe

some set of variables that fall under the control of the social planner and affect the

strategic environment. Then mechanism design is simply searching for the values of

those variables that maximize the expectation of the social planner’s objective over the

PGT distribution induced by those variables. For example, if the social planner can

choose m from some set M , then the PGT approach to mechanism design is simply

argmax
m∈M

Em[wm(q)] =

∫

q

wm(q)Pm(q|I )dq.

7Predictive Coalitional Theory (PCT) and Predictive Unstructured Bargaining (PUB) respectively.
8Predictive Mechanism Design (PMD)
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With most PGT models, we will not be able to solve for the gradient of expected social

welfare. Therefore, successful work in this area will likely borrow Monte Carlo optimiza-

tion techniques from statistics and control theory.

Although PGT is a way forward for game theory, it will always rely heavily on existing

concepts (i.e. NE, QRE, level-k, behavioral economics, etc.) and problem domains

(dynamic games, learning, incomplete information, etc.). These have proven to provide

valuable insight into strategic human interaction, and are indispensable for the pursuit

of better statistical models.
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A Sampling the Posterior

Our solution for sampling from P (q|I ) is to form a population of q’s by randomly draw-

ing mixtures of Gaussian distributions. The q’s are drawn from the sampling distribution

H(q) = H(ρ, µ, Σ). Without much information about the space of joint distributions q,

it is safest to explore the space of triples (ρ, µ, Σ) uniformly. Hence, each ρi is sampled

uniformly from the Mi-dimensional simplex, where Mi is the number of mixture com-

ponents in qi. The means, µi, are sampled uniformly from the hypercube given by lower

and upper bounds µil and µih. Finally, Σj
i is the covariance matrix of the j’th component

of i’s mixture distribution. It is determined by random Jacobi rotations of a diagonal

matrix with eigenvalues λ. These eigenvalues are drawn from a uniform distribution with

lower bound λl and upper bound λh. In order to guarantee positive definiteness of Σi
j, λl

is non-negative.

Specifically, to obtain each q, we draw a mixture of truncated multivariate normal

distributions for each player,

qi(xi) =





∑Mi

j=1
ρj

i φj
i (xi)

Zi
if Bi ≤ xi ≤ Li

0 otherwise

where

φj
i (xi) =

1

2πDi/2|Σj
i |.5

exp
[−.5(xi − µj

i )
′(Σj

i )
−1(xi − µj

i )
]
.

and

Zi =

∫ Bi

Li

Mi∑
j=1

ρj
iφ

j
i (xi)dxi.

The constant Zi normalizes the mixture to the hypercube [Li, Bi], where Li is the mini-

mum of i’s action and Bi is its maximum. Di is the dimensionality of i’s mixed strategy

vector.

The question of whether to let M (the vector that gives the number of component

distributions in each player’s mixture) be fixed or allow it to be determined randomly

remains. Aside from the obvious computational issues that arise by extending the dimen-

sion of our integral over all possible values of M, there are strong behavioral reasons to

fix the number of component distributions. Suppose Mi = M̄. With M̄ components,

a mixture of Gaussians can have any number of peaks less than or equal to M̄. In a
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behavioral model, it does not seem unreasonable to assign probability zero to situations

in which a player has a mixed strategy with many multiple peaks. This restriction con-

tradicts the QRE, which assumes that each qi can have any number of peaks. However

as shown in the results section, restricting the sampling routine to single-peaked q’s does

not rule out the possibility of a multi-modal posterior distribution over xi’s.

The Cournot duopoly in this paper involves only two players each with a one-dimensional

move space. Therefore, importance sampling with a uniform proposal distribution is feasi-

ble. However, as more players are introduced, and the move spaces increase in dimension,

the space of q’s grows exponentially. With higher dimensional games, a uniform proposal

distribution may not efficiently explore the space of q’s. In such a case, it may be more

appropriate to select a more targeted proposal distribution or to employ alternative sam-

pling routines such as the Metropolis-Hastings algorithm.

B Estimating Statistics

Now that we have a method for sampling the posterior, it is possible to form Monte Carlo

estimates of statistics that come from the posterior.

Let qρ,µ,σ be the parameterized mixed strategy profile distribution and f(qρ,µ,σ) be

any function of qρ,µ,σ. The posterior expectation of f(·) is then:

Eρ,µ,σ[f(q)] =

∫

ρ,µ,σ

f(qρ,µ,σ)P (qρ,µ,σ|I )dρdµdσ (11)

=

∫

ρ,µ,σ

f(qρ,µ,σ)
V (qρ,µ,σ)

Z
dρdµdσ

where

V (qρ,µ,σ) = eαS(qρ,µ,σ)L (I |qρ,µ,σ)

and

Z =

∫

ρ,µ,σ

V (qρ,µ,σ)dρdµdσ

is the normalizing constant.

As an example, choose f(q) = q. Then Eρ,µ,σ(f(q) | I ) = Eρ,µ,σ(q | I ) is the

expected mixed strategy profile. Now each mixed strategy profile q is a distribution

P (x | q). Accordingly, for this choice of f , Eρ,µ,σ(f(q) | I ) is just the posterior expected

pure strategy profile, P (x | I ).
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We can estimate the numerator integral in equation 11 with T i.i.d. samples {ρ(t), µ(t), Σ(t)}T
t=0

from H. In the usual way with importance sampling Robert and Casella (2004), we write

∫

ρ,µ,σ

f(qρ,µ,σ)V (qρ,µ,σ)dρdµdσ ' 1

T

T∑
t=1

f(qρ(t),µ(t),σ(t))V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))

Similarly, we can estimate the denominator integral by

∫

ρ,µ,σ

V (qρ,µ,σ)dρdµdσ ' 1

T

T∑
t=1

V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))
.

C Computational Issues

Here we briefly describe two computational issues that arise in PGT modeling. The first

concerns a “density of states phenomenon” that arises as the complexity of the game

grows. The second concerns the choice of QR-rationality likelihood so that Monte Carlo

estimates converge.

C.1 Density of states

In many cases it will be very difficult to have any idea what the space of mixed strategy

profiles, ∆X , looks like. In particular, it will be difficult to know how to efficiently

sample this space so that we draw with high probability the types of q’s that get high

probability under P (q|I ). Therefore, we resort to a proposal distribution H(ρ, µ, Σ) that

is roughly uniform over the set of mixtures of Gaussians. This can be very inefficient. In

addition, as the complexity of the game in question grows, the inefficiency of a uniform

proposal distribution grows. In the Cournot setting from figure 1, we drew 120,000 q’s

from H(ρ, µ, Σ). The histogram of these rationalities for firm A is given below:

Note that the mass is tightly packed around zero, which represents complete non-

rationality. The density drops off quickly when moving away from zero in either direc-

tion. Because our draws of qA and qB are independent under H(·) for each q, the joint

distribution of (βA, βB) is the product distribution. This means that while we have a very

low probability of drawing a high rationality q for one firm, the probability of drawing a

high rationality q for both firms is far lower still.

As the number of players increases, the density of states problem gets worse. It
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Figure 10: Histogram of firm A’s QR-rationality parameters, βA, from 120k random draws
of q for Cournot setting from figure 1.

also gets worse as the dimensionality of each individual’s strategy space increases. For

example, if each firm were to choose a quantity and a price, then the associated histogram

for QR-rationality would be much tighter around zero than even the histogram in figure

10.

For the intelligence criterion, the density of states means that most q’s yield an in-

telligence of about 0.5. That is, given q−i, most qi’s are better than roughly half of the

q′i ∈ ∆(Xi).

C.2 Bounded likelihood

The QR-rationality criterion is unbounded. The parameter β can vary from −∞ to ∞.

Therefore, if our Monte Carlo estimates of the posterior and its moments are to converge,

then we must worry about the specific form of the likelihood function.

In particular, as we established in the discussion of density of states above, the prob-
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ability of drawing a q with high QR-rationality under the proposal distribution H(·) can

be vanishingly small. So if the likelihood is not bounded above for large β, then the ratio

L (I |qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))

will diverge for q that give rise to large β. This leads our Monte Carlo estimator to have

infinite variance [see Robert and Casella (2004)].
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