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Abstract

We examine the potential for simple auction mechanisms to efficiently allocate
arrival and departure slots during Ground Delay Programs (GDPs). The analysis is
conducted using a new approach to predicting strategic behavior called Predictive
Game Theory (PGT). The difference between PGT and the familiar Equilibrium
Concept Approach (ECA) is that PGT models produce distribution-valued solu-
tion concepts rather than set-valued ones. The advantages of PGT over ECA in
policy analysis and design are that PGT allows for decision-theoretic prediction
and policy evaluation. Furthermore, PGT allows for a comprehensive account of
risk, including two types of risk, systematic and modeling, that cannot be consid-
ered with the ECA. The results show that the second price auction dominates the
first price auction in many decision-relevant categories, including higher expected
efficiency, lower variance in efficiency, lower probability of significant efficiency loss
and higher probability of significant efficiency gain. These findings are despite the
fact that there is no a priori reason to expect the second price auction to be more
efficient because none of the conventional reasons for preferring second price over
first price auctions, i.e. dominant strategy implementability, apply to the GDP slot
auction setting.
Keywords: auction, ground delay program, entropy, predictive game theory, strate-
gic risk

1 Introduction

NASA and the FAA are exploring market mechanisms to increase the efficiency of the
National Airspace System (NAS) so that it can accommodate the projected increase in
demand over the next half century. Of particular interest is the efficient reassignment of
takeoff and arrival slots for periods during which bad weather reduces NAS capacity. We
introduce an auction mechanism (slot auction) that is designed to serve this purpose.

We would like to thank George Judge.
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We analyze this auction using a distribution-valued solution concept, an approach
broadly referred to as Predictive Game Theory (PGT) [see Wolpert and Bono (2009);
Bono and Wolpert (2009)]. This is in contrast to the standard game theoretic approach,
which uses set-valued equilibrium solutions to analyze strategic situations. We refer to
this approach as the Equilibrium Concept Approach (ECA). Examples of the ECA are the
well-known Nash equilibrium (NE), quantal response equilibrium (QRE) [see McKelvey
and Palfrey (1995)] and epsilon equilibrium [see Radner (1980)]. The PGT approach
is a non-equilibrium-based approach that formulates a probability distribution over all
possible behaviors from available information. Because the output of a PGT model is
a probability distribution, researchers, decision makers and stakeholders are capable of
using the well-established theory of decision-making under uncertainty to make predic-
tions about airline behavior and to choose among allocation mechanisms. With the PGT
distribution over behavior, decisions are fully informed of all relevant risk information.
In contrast, the ECA has none of these capabilities. This paper represents the first
application of PGT to a real-world problem of policy analysis.

1.1 Roadmap of the Paper

The paper proceeds as follows. First, we introduce the problem of allocating arrival
slots during GDPs. We discuss the current mechanism, Ration-by-Schedule (RBS), and
introduce first and second price versions of a simple auction alternative to RBS.

Next, we provide a background on PGT. In particular, we point out the advantages
of using a distribution-valued solution concept over the ECA for purposes of real world
policy and risk analysis. Among the most important of these advantages are the ability
to do mechanism design in a manner that is consistent with decision theory and the
availability of the PGT mode as a universal refinement. Here we also include a brief
summary of the Bayesian PGT model of this paper.

We next introduce our PGT model of GDP slot auctions. First we specify the profit
functions of the airlines in terms of delay costs. Next, we introduce the QR-rationality
likelihood and the entropic prior. Finally, we discuss our importance sampling procedure
for estimating the posterior distribution.

In the next section we present our predictions for airline behavior, profits and efficiency
gains. We demonstrate that the first and second price versions of the GDP slot auction
obtain higher expected efficiency than the RBS allocation. Furthermore, we demonstrate
that the second price auction dominates the first price auction in many decision-relevant
categories, including higher expected efficiency, lower variance in efficiency, lower prob-
ability of significant efficiency loss and higher probability of significant efficiency gain.
These findings are despite the fact that there is no a priori reason to expect the second
price auction to be more efficient because none of the conventional reasons for preferring
second price over first price auctions, i.e. dominant strategy implementability, apply to
the GDP slot auction setting.

We conclude with a discussion of the results.
We present a summary equilibrium analysis of the first and second price slot auctions
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in the appendix. We show that both auctions Nash implement the efficient allocation.
Here we also demonstrate that standard properties of the airline revenue functions render
the concept of dominant strategy implementability meaningless in the context of GDP
slot auctions. Several computational issues are also discussed in the appendix.

1.2 GDP Slot Reassignment

The FAA expects U.S. air traffic to more than double by the year 2025. In an attempt
to accommodate such growth, it has launched a campaign called NextGen to transform
the National Airspace System (NAS) with 21st century technologies. The major goals
of NextGen are to ensure that safety, capacity and environmental goals are met [see
FAA (2009a,b)]. Much of NextGen is aimed at expanding NAS resources. However,
it is recognized that these resources will always be finite, and so efficient allocation of
resources is also a major part of the NextGen plan. Through the Collaborative Air
Traffic Management (CATM) component of NextGen, the FAA is focusing on the role of
decentralized market approaches to efficient allocation of NAS resources.

Of all NAS resources, departure and arrival slots have perhaps received the most at-
tention for potential conversion to market allocation. The departure and arrival slots
for a given airport are the scheduled times at which aircraft are permitted to takeoff
and land. Currently, the International Air Transport Association (IATA) provides slot
allocation procedures that rely on airlines voluntary cooperation through IATA coordi-
nation at biannual conferences. Hence, airlines do not currently pay for slots. Special
consideration is given to High Density Rule (HDR) airports, which include New York –
Kennedy and LaGuardia, Chicago – OHare, and Washington – Ronald Reagan. In HDR
airports, airlines are permitted to sell and lease slots. However, there is a “use-it-or-lose-
it” provision that the current holder of a slot must operate it at least 80% of the time
or it is reclaimed to a pool of unused slots for reallocation [see Le et al. (2007); Fan and
Odoni (2002); Cholankeril et al. (2003)].

There is particular interest in deploying market allocations of slots in the context of a
Ground Delay Program (GDP). A GDP is a situation in which the scheduled demand for
slots exceeds the safe supply of slots. Because the FAA does not schedule more arrivals
or departures than the NAS can handle under normal conditions, this situation typically
arises during bad weather, congestion or periods of heightened security. In such cases, the
FAA institutes a GDP at the affected airports in order to limit the arrivals and departures
to a safe level. Therefore, regardless of how the original schedule was determined, a GDP
forces the FAA to quickly create a new schedule.

Consider the following example. JFK airport has 30 flights scheduled to depart over
the next hour. Bad weather in the New York City area has made it so that JFK can
safely handle only 15 departures. The problem is how to allocate the 15 GDP departure
slots among the airlines that had one or more of the 30 scheduled pre-GDP departure
slots (scheduled carriers).

Currently, the FAA employs Collaborative Decision Making (CDM) to allocate GDP
slots among scheduled carriers. The CDM method involves Ration-by-Schedule (RBS).
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This is exactly as it sounds. In the example of the previous paragraph, the scheduled
carriers of the first 15 pre-GDP scheduled flights will get the 15 GDP slots. The carriers
are free to use the allocated GDP slots for whichever flights they please. They are not
required to operate the pre-GDP scheduled flight in the GDP slot. However, if an airline
is not able to operate one of the GDP slots that it is assigned, the airline can relinquish
the slot to the FAA. In return for the relinquished slot, the airline will receive priority
for slots that become available due to other airlines not being able to operate their slots.

The efficiency of the RBS allocation, however, depends entirely on the pre-GDP sched-
ule. RBS can not be expected to be efficient even in a simple world where every airline’s
profit is decreasing in the sum of the delays of each of its flights at exactly the same rate.
The reason is that flights at the GDP-affected airport have different downstream effects.
For example, the value to United Airlines of its flight #111 arriving on time in Newark
may depend on whether passengers from other United Airlines flights will be switching
to #111 in Newark before #111 continues on to its next destination. Hence, if airline
profit only depended on GDP-affected flights, then RBS might be efficient. But since
airline profit depends on the airline’s entire network of flights, RBS is not generally effi-
cient even in the simple world where every airline’s utility is just an identical decreasing
function of the sum of the delays of its flights. We can loosely refer to the type of demand
interdependencies discussed here as “network effects.”

In consideration of these network effects, many researchers have discussed auction allo-
cation of arrival and departure slots. Grether et al. (1979, 1981) and Rassenti et al. (1982)
are the seminal papers in that line of research. They propose annual auction allocations
of all departure and arrival slots for all airports (NAS-wide) to replace the biannual IATA
procedure. This is a much more extensive implementation than the auctions analyzed in
this paper, which are implemented just at affected airports during GDPs. For NAS-wide
slot auctions, Grether et al. suggest a two-stage approach. The primary stage consists
of independent sealed-bid competitive auctions at each airport. The authors suggest a
secondary market consisting of a computerized form of the oral double auction to account
for the slot demand interdependencies that are not captured in the primary market.

To overcome certain disadvantages of the two-stage approach, Rassenti et al. suggest
a sealed-bid combinatorial auction. This auction allows airlines to submit conditional
bids and therefore accounts for demand interdependencies in a single stage. Winners are
determined by an algorithm that uses the sealed bids to maximize system surplus. In this
way, efficiency is directly built into the scheme. They suggest a secondary trade market
to follow the combinatorial auction which would serve to correct inefficiencies that arise
as a result of new information. Rassenti et al. experimentally compare the combinatorial
auction to the market proposed by Grether et al. and find that the efficiency gains are
increasing in the degree of complexity of the assignment problem.

Unfortunately, these NAS-wide auctions are not a realistic policy choice for GDP slot
allocations. The primary reason is that their complexity and multiple stages require time
and resources that are not available during GDPs. For instance, if there are F GDP slots,
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and an airline has just f ≤ F flights to operate during the GDP, then there are

f∑
k=1

F !

k!(F − k)!

conditional bids. This number gets large quickly. For F = 15 and f = 5, this airline
has 4943 conditional bids. When there are multiple airlines with strategy vectors of such
length, it is a non-trivial problem to determine the system surplus maximizing allocation
as is required by a combinatorial auction. Furthermore, it is unlikely that airlines will be
able to accurately determine the value of all allocations of all subsets of their flights in
such short time. However, a GDP slot allocation scheme needs to be implementable in
real-time when NAS resources are stretched thin. If the scheme is a market mechanism,
then the facilitation costs should be minimal. The lack of preparation time also suggests
that the strategy space should be simple even though the airline profit functions rarely
are.

These considerations motivate the design of a simple GDP slot auction. In this auc-
tion, the number of bids for a given airline is equal to the number of GDP slots. Further-
more, the algorithm which assigns slots from the bid vectors is trivial. A more detailed
account of the auction design is presented in section 2.

In the appendix, we show that the first price version of the GDP slot auction has the
property that every NE is efficient, and that the second price version Nash implements
the efficient outcome. However, we also show that the simplification of the strategy space
means that neither version of this auction can be dominant strategy implementable. In
particular, the lack of an airline profit function that is additively separable in GDP
slots renders the concept of incentive compatibility meaningless. This means there is
a theoretical trade-off posed by reducing the strategy space from the set of conditional
bids, which is the case in the full combinatorial auction, to the set of unconditional bids,
which is the case in the GDP slot auction presented here.

But these types of theoretical equilibrium properties are not the basis upon which
rational policy makers choose among policy alternatives. Rather, according to the ax-
ioms of Savage (1954), a rational decision maker chooses among available alternatives by
comparing their expected utilities. There is no reason, in principle, that this should be
different for a policy maker. For the problem of GDP slot auctions, this means the follow-
ing. If the FAA policy maker’s utility for a mechanism depends on the strategies of the
airlines, and the strategies of the airlines depend on the mechanism, then the FAA policy
maker requires a probability distribution over the airlines’ strategies for each mechanism.
The ECA is unable to provide this because the output is a set of equilibrium strategies
without associated probabilities.

Consider the imaginary case where, for every single mechanism, the ECA produces
a unique equilibrium. One might interpret the unique equilibrium of a mechanism as a
Dirac delta function about the equilibrium profile. However, this implies that all non-
equilibrium strategy profiles do not occur, which is in strict conflict with virtually every
experimental data set ever compiled. That is, all strategy profiles occur with some
probability, including non-equilibrium strategy profiles. So if the policy maker chooses
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among multiple mechanisms (each with a unique equilibrium) by evaluating her expected
utility using the Dirac delta function about the equilibrium profile of each, her decision
carries the assumption that the only possible strategy profile for each mechanism is the
equilibrium behavior. It is not hard to see that such a model can lead to very bad decision
making.

In contrast to the imaginary situation where all mechanisms have a unique equilibrium,
in practice, at least some mechanisms will have multiple equilibria. Such is the case with
GDP slot auctions, where the first and second price versions of the GDP slot auctions
have many equilibria. Here, the equilibrium concept does not allow the policy maker to
calculate expected utility at all. The reason is that the equilibrium concept simply lists
the strategy profiles that satisfy the equilibrium condition. It does not provide the relative
likelihoods of the elements of the equilibrium set. When there are multiple equilibria,
there is no principled way to calculate the policy maker’s expected utility from a given
mechanism. Without calculating expected utility for each mechanism, the policy maker
cannot make use of the axioms of Savage (1954) to make a rational choice from her policy
alternatives. Note also that the presence of multiple equilibrium profiles does not fix the
problem that non-equilibrium profiles are implicitly given probability zero of occurring.

Because the ECA can only in rare special cases produce degenerate distributions over
airline strategies, the FAA cannot use it to conduct a risk analysis. In particular, the
ECA cannot be used to answer the following basic questions posed by NAS stakeholders
and policy makers:

• “Which mechanism produces the least variance in efficiency?”

• “What is the probability that mechanism A is more efficient than mechanism B?”

• “Which mechanism has a lower probability of being less efficient than current prac-
tices?”

• “What is the 95% confidence interval for the efficiency of each mechanism?”

• “Which mechanism has the highest expected airline profits?”

• “What is the probability that profits will be below current profits?”

Fortunately, the PGT approach used in this paper produces a probability distribution
over airline strategies. This means it can always be used to compare mechanisms in
terms of the policy maker’s expected utility. It can also always be used to conduct
a thorough risk analysis and answer the risk-relevant questions of stakeholders listed
above. Furthermore, the PGT approach explicitly accounts for two types of risk that the
ECA simply assumes away.

systematic risk: when there is uncertainty about which mixed strategy profile the play-
ers will choose, this is the risk that they will choose a mixed strategy profile that
produces undesirable outcomes on average.
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modeling risk: this is the risk associated with the researcher’s uncertainty about the
appropriateness of a particular model for describing the strategic setting.

The way in which PGT is able to account for systematic and modeling risk is discussed
in section 1.3.2.

For these reasons, and others yet to be mentioned, we choose to analyze our slot
auction with PGT, a model of strategic behavior that outputs a probability distribution
over all strategy profiles instead of an equilibrium set. The following subsection formally
introduces the PGT approach.

1.3 PGT

1.3.1 Background on PGT

Say one wishes to predict some characteristic of interest y concerning some physical
system, based on some information I concerning the system. Statistics provides many
ways to convert such a I into a probability distribution over y.1 Such a distribution is
far more informative than a single “best prediction”.

However if needed we can synopsize the distribution with a single prediction. One way
to do that is to use the mode of the distribution as the prediction. When the distribution is
a Bayesian posterior probability, P (y | I ), this mode is called the Maximum A Posterior
(MAP) prediction. Alternatively, say there is a real-valued loss function, L(y, y′) that
quantifies the penalty we will incur if we predict y′ and the true value is y. Then Bayesian
decision theory counsels us to predict the “Bayes optimal” value, which is the y′ that
minimizes the posterior expected loss,

∫
dyL(y, y′)P (y | I ) [see Jaynes and Bretthorst

(2003); Gull (1988); Loredo (1990); Bernardo and Smith (2000); Berger (1985); Zellner
(2004); Paris (1994); Horn (2003)].2

A priori, there is no reason that this standard approach to predicting the behavior of
physical systems is not appropriate when the physical system in question is some human
beings playing a game. To do this we would identify y with the joint choice made by the
players in the game. For example, if the players are engaged in a conventional strategic
form game, the choice of each player i is i’s mixed strategy, which we will sometimes just
call i’s “strategy” for short [see Fudenberg and Tirole (1991); Myerson (1991); Aumann
and Hart (1992); Basar and Olsder (1999)]. In such strategic form noncooperative games
the moves of the players are independent, so the joint choice of the players – y – is the
product of their mixed strategies, which we write as q ≡

∏
i qi. In this example, I is the

details of the game (e.g., the profit functions of the airlines), perhaps in conjunction with
other information, like quantifications of how rational each player is. So the Bayesian
posterior is a distribution over strategy profiles, P (q | I ).

1In this paper we will sometimes be loose in distinguishing between probability distributions, proba-
bility density functions, etc., and will generically write any of them as “P (. . .)” with the context making
the meaning clear.

2In this paper, we will write integrals with the measure implicit. So if the set being “integrated over”
is countable, we implicitly mean a point measure, in which the integral is equivalent to a sum.

7



We use the term Predictive Game Theory (PGT) to refer to any application of
statistical inference (Bayesian or otherwise) to games, in contrast to the use of statistical
inference by some players within a game. The ultimate goal of PGT is to use the
same kinds of statistical tools to exploit all information about a system being predicted,
whether that information is the utility functions of some players in the system, or some
more conventional kind of statistical data concerning inanimate subsets of the overall
system. In this paper we focus on PGT for GDP slot auctions. These are noncooperative
strategic form games (although PGT is also applicable to cooperative games, unstructured
bargaining, etc.). PGT replaces the ECA issue of how to specify a set of equilibrium
strategy profiles for a specified game I , E (I ), with the issue of how to specify a density
function over all possible joint strategies of that game, e.g., a Bayesian posterior P (q |
I ). Therefore, PGT should be viewed as an alternative to the ECA, rather than as an
alternative to any particular instance of the ECA, e.g. Nash equilibrium.

In the usual way, a loss function can be used to distill PGT’s density function over
strategy profiles into a single predicted strategy, via decision theory. This mapping of a
game to a single Bayes optimal strategy profile can be viewed as an “solution concept”.
This solution concept depends on the loss function of the statistician who is making the
prediction. (Note that this loss function is not specified in the game — the statistician
making the prediction is external to the game.) Accordingly, this solution concept will
vary with the external statistician who is making the prediction. This contrasts with the
ECA, which ignores the concerns of the external statistician when telling that statistician
what prediction to make. Another contrast with the ECA is that this solution concept
typically produces a single strategy profile, without any need for a refinement.

Furthermore, often under the Bayes optimal strategy profile no player’s strategy is a
best response to the strategies of the other players. Assuming there is more than one NE
of the game, this is true even if the players are all fully rational, i.e., if the support of the
density over strategy profiles is restricted to the NE. In this sense, “predictive” bounded
rationality is automatic under PGT, in contrast to the case when using the ECA.

Finally, there are substantial computational differences between PGT and the ECA.
In the ECA, numerical techniques are often needed to solve sets of simultaneous nonlin-
ear equations. In contrast, under PGT numerical techniques are often needed to solve
constrained maximization problems (e.g., if one wishes to find argmaxqP (q | I )) or to
solve integrals (e.g., if the loss function is quadratic, so that the Bayes optimal prediction
is the average

∫
dq qP (q | I )). Especially in large problems like GDP slot auctions, the

computational burdens of the numerical techniques used in PGT might be smaller than
those under the ECA.

1.3.2 Advantages of PGT

PGT has all the usual benefits inherent in using a statistical approach to predict the real
world. In contrast, many of these benefits are absent in the ECA. As a result PGT has
some inherent advantages over the ECA; in this subsection we highlight three of them in
the context of GDP slot auctions, ranging from the abstract to the highly practical.
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1. One benefit of PGT is that, in general, it assigns non-zero probability to all mixed
strategy profiles. In contrast, as mentioned above, the ECA generally assigns prob-
ably zero to almost all profiles, in the sense that it treats all strategy profiles outside
a measure-zero equilibrium set as physically impossible.3 This means that unlike
the ECA, PGT respects the fact that in the real world, all mixed strategy profiles
can occur with some non-zero probability.

Indeed, if a given strategy profile is not an equilibrium strategy profile for a given
equilibrium concept, then an observation of that profile invalidates that equilibrium
concept, stricty speaking. In this narrow sense, every equilibrium concept suggested
to date has been experimentally invalidated [see Camerer (2003)]. In contrast, under
the PGT approach, the effect of observing any particular profile is simply to modify
the posterior distribution over future profile observations.

In fact, the situation is worse than this for the ECA. Even if one restricts attention
to the profiles in some equilibrium set, whenever there is more than one such profile,
the ECA provides no information about the relative probabilities of those profiles.
In this, every equilibrium concept is an incomplete predictive theory. In contrast,
by definition PGT provides the relative probabilities of all profiles.

It is in this manner that PGT accounts for the systematic risk discussed above.

2. Another advantage of PGT is that, being a fully statistical model, it can combine
multiple types of information / data into an associated posterior. This ability is
necessary to properly express the uncertainty the modeler still has about the strat-
egy profile after all that information. As an example, say the modeler is uncertain
about the airline profit functions, so that I is a distribution over possible profit
functions. (Note that the modeler may have such uncertainty about the airlines’
profit functions even for a complete information game, where the airlines have no
such uncertainty about one anothers’ profit functions.) Then the proper way for
the modeler to express her associated uncertainty over mixed strategy profiles is by
averaging over that distribution.

As a simple illustration, suppose m is the probability that the profit functions are
I ′, and 1 − m the probability that they are instead I ′′. Then PGT says we
must average over those two sets of utility information to properly express modeler
uncertainty. Formally, we write I = {I ′,I ′′} and break the posterior into two
terms:

P (q | I ) = mP (q | I ′) + (1−m)P (q | I ′′).

In contrast, in the ECA, trying to address uncertainty about the profit functions
in a similar fashion would entail averaging over the associated equilibrium sets
somehow. It is not at all clear that the axiomatic foundations of the ECA provide
a principled way of doing such averaging.

Futhermore, often we will have types of information that are relevant to our predic-
tion of the strategy profile but that do not directly concern the game specification.

3One notable exception is the epsilon equilibrium concept of Radner (1980)
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Examples of such information are demographic data, observational data concern-
ing a particular player’s idiosyncracies (e.g., in the form of a Bayes net stochastic
model of that player’s behavior in the absence of utility functions), and empirical
data about the relative probabilities of various focal points. Again, a statistical
approach like PGT is necessary to use these types of information to refine our pre-
diction in a principled manner. (For example, given a distribution over focal points,
one should (!) use it to average the posteriors given each possible focal point, in
exact analogy to the average over utility functions described above.) In contrast,
there is nothing in the ECA that would allow us to incorporate this information in
such a principled way.

In fact, in PGT the principled integration of uncertainty extends even to uncertainty
about what model of strategic behavior to use. Just as a modeler does not need
to make a choice between utility information I ′ and I ′′, she also does not need
to make a choice among models that describe player behavior. As an example, she
does not need to choose between a posterior P (q | I ′) motivated by the quantal
response equilibrium (QRE) and a posterior P (q | I ′′) motivated by a level-k
model [see Costa-Gomes and Crawford (2006)]. In fact, she should not make such
a choice. Rather she should average over both posteriors, according to the the
relative probabilities that she assigns to the possibilities that each of those two
models applies to her particular prediction problem. No such averaging is possible
with the ECA.

This is precisely the manner in which PGT accounts for the modeling risk discussed
above.

3. Perhaps the most important benefit of PGT’s statistical approach is that it not only
allows us to address point prediction in a principled, decision theoretic manner (as
described above), but also to address mechanism design problems this way. In fact,
PGT allows us to extend the scope of “mechanism design” far beyond its usual
domain, into a full-fledged theory of “game control”.

More precisely, say the FAA policy maker can set a parameter λ specifying some
aspect of the GDP slot auction played by the GDP-affected airlines, whose mixed
strategy profile is q, as usual. Let G(q, λ) be the “efficiency” of the slot auction
allocation (i.e. the utility function of the policy maker), and indicate the game
specified by λ as Γλ. Let I be some other information that the controller has
concerning the game and/or player behavior, in addition to the value λ that she
will choose. Then the standard approach of optimal control (i.e., Bayesian decision
theory) says that the FAA policy maker should set λ to

argmaxλ

[
E(G | I , λ)

]
= argmaxλ

[ ∫
dq G(q, λ)P (q | I , λ)

]
(1)

So for example, if the policy maker’s utility function only depends on the pure
strategy profile of the players, we can write G(q, λ) =

∫
dx q(x)W (x) for some
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function W . In this case the policy maker should set λ to

argmaxλ

[ ∫
dq G(q, λ)P (q | I , λ)

]
= argmaxλ

[ ∫
dqdx W (x)q(x)P (q | I , λ)

]
(2)

There are many ways to extend the foregoing. For example, consider the case where
the policy maker’s utility is not efficiency G(q, λ), but rather G(θ, λ) where θ ∈ Θ is
set stochastically by P (θ | q, λ). In other words, the policy maker does not directly
care about the mixed strategy profile, but rather about the ramifications of that
profile on the state of some other system with state space Θ. As an example, say
the auction allocation stochastically sets NAS-wide delays, θ, and the policy maker
only cares about that value θ. Then the policy maker should set λ to maximize∫
dqdx P (θ | x)q(x)P (q | I , λ)W (θ).

Furthermore, by using PGT we can compare choices of λ (i.e., choices of “mech-
anism”) based on other considerations beside the associated values of expected
welfare. In particular, we can use PGT’s posterior to answer many of the questions
that real-world NAS stakeholders will ask concerning the possible policy choices of
a regulator, such as the questions suggested above:

• “Which mechanism produces the least variance in efficiency?”

• “What is the probability that mechanism A is more efficient than mechanism
B?”

• “Which mechanism has a lower probability of being less efficient than current
practices?”

• “What is the 95% confidence interval for the efficiency of each mechanism?”

• “Which mechanism has the highest expected airline profits?”

• “What is the probability that airline profits will be below current profits?”

In addition to all these advantages, the PGT approach to the control of games
allows the policy maker to seamlessly incorporate constraints on her decision. For
example, if she wants not to over-burden airlines, she can choose the slot allocation
mechanism that maximizes efficiency subject to a constraint on airline profits. This
constraint can be on the variance of total airline profits, the distribution of indi-
vidual airline profits or the probability that each airline achieves some lower bound
profit. In PGT, these types of calculations are straight-forward in principle, since
the constraint uses only I and the PGT posterior.

It is important to emphasize that PGT point predictions and mechanism choices
are determined by the researcher’s and/or policy maker’s objectives, which are
external to the game specification. (This is exactly like in conventional Bayesian
decision theory and statistics.) This central importance of the modeler’s objectives
is completely missed by the ECA.
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In general, the axiomatic foundations of Bayesian decision theory tell us that mod-
elers seeking to make a point prediction should minimize expected loss over the
posterior, and policy makers seeking to choose a mechanism should maximize their
own expected utility over the posterior. To do so they need to have a distribution
over strategic behaviors. The focus of PGT is on providing such a distribution.
Given such a distribution, the modeler / policy-maker can meet their goals, regard-
less of issues like whether there are multiple equilibria.

None of this is possible with the ECA.

1.3.3 The PGT Model of this Paper

As mentioned, the PGT approach encompasses Bayesian and non-Bayesian methods of
formulating a distribution over strategy profiles, P (q|I ), from information I . In this
paper, we consider a specific example of a Bayesian PGT model. In this model, we
specify an entropic prior P (q). This prior is based on the maximum entropy principle of
information theory and embodies the principle of insufficient reason [see Shannon (1948);
Jaynes (1957, 2003)]. In short, if two strategy profiles are equally probable according to
the profit function information, the entropic prior gives more weight to the profile that
contains less information.

The likelihood, L (I |q), is based on the QRE model of McKelvey and Palfrey (1995)
and is called the QR-rationality likelihood (short for quantal response rationality). The
QR-rationality likelihood assigns weight to a given q according to the degree to which
each airline’s strategy qi is a profit-maximizing response to the profile of other airlines’
strategies q−i. This allows us to incorporate bounded rationality in a way that makes sense
given the complex and rushed environment of a GDP. That is, we make the assumption
that airlines seek to maximize profits but are not always capable of doing so. However,
they are not completely incapable. In particular, given q−i, the likelihood assigns greater
weight to qi than q′i if and only if qi achieves higher expected profit against q−i than does
q′i.

2 Description of Slot Auctions and Notation

In this section we describe the simple GDP slot auction in both its first and second price
versions.

Consider a one-shot game in which each of I airlines simultaneously submits a vector
of bids, xi, with the property that each element, xi(j) is nonnegative. The length of xi
is F̂ , the number of GDP slots. In other words, each airline submits a bid for each GDP
slot.

Starting from the earliest slot, the FAA proceeds to allocate each slot to the highest
bidder that has flights to operate in the current slot as well as all previously allocated
GDP slots. Hence, the highest bidder for the jth slot will not be allocated slot j if that
airline cannot operate slot j in addition to all the slots prior to j that it has already
been allocated. In that case, the FAA will allocate slot j to the next highest bidder that
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can. This information is known by the FAA from the pre-GDP schedule which lists the
earliest slot each scheduled flight can fill. Each of the slots are allocated in this fashion,
and no airline will have inoperable slots.

There are two versions of this auction, first price and second price. In the first price
version, an airline that is awarded a slot pays exactly what it bid for that slot. In the
second price version, an airline that is awarded a slot pays the next highest bid for that
slot. When the winner of a slot is the airline that submitted the lowest bid, the cost is
zero.

As mentioned above, the value to an airline of operating a given GDP slot depends
on the other GDP slots it is operating. In other words, airline utility is generally not
additively separable in GDP slots operated. This is due to the downstream effects of
delays and cancellations.

Therefore, to explore the properties of the GDP slot auction via the PGT framework,
it is informative to think about a very general utility form. We adopt the following,

πi = Ri − Ci
where Ri is airline i’s revenue, which includes all operational costs and benefits, and Ci
is the amount it pays to the FAA for its allocated flights as per the rules of the auction.

Let F represent the set of pre-GDP slots. Fi is the set of i’s pre-GDP slots, for which
i presumably associates an operable flight to each element. Let F̂ be the set of GDP
slots and Ω(F̂) is the set of all subsets of GDP slots. Therefore, airline i’s revenue is a
function, Ri(·|F) : Ω(F̂)→ R, that assigns a monetary value to each subset of GDP slots
given the pre-GDP schedule. This is the value to i of optimally operating its assigned
GDP slots. F̂i(x) is the set of GDP slots assigned to i under the profile of bids x.

3 PGT Model

We are interested in formulating a distribution over the space of mixed strategy profiles.
The set of bid vectors (pure strategies) for airline i is Xi. The set of mixed strategies
for airline i is ∆(Xi). A generic element of ∆(Xi) is qi, a mixed strategy. The set of
mixed strategy profiles is ∆X = ×i∆(Xi). A generic element of ∆X is q =

∏
i qi, a mixed

strategy profile.
The central focus of the PGT approach, from which all predictive information is

derived, is the posterior distribution, P (q|I ), over mixed strategy profiles q ∈ ∆X :

P (q|I ) ∝ P (q)L (I |q), (3)

where P (q) is the prior distribution over mixed strategy profiles, I is information about
the game specification, including profit functions, and L (I |q) is the likelihood of I
given q.

3.1 Airline Profit Functions

To specify the airline profit functions, we closely follow the detailed account of airline
cost functions presented in Sherali et al. (2006). In particular, we model airline i’s
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revenue Ri(F̂i|Fi) from operating a subset of its pre-GDP slots, F̂i, as the cost of delays
incurred by the airline for being forced to deviate from its pre-GDP schedule. Formulating
revenues as delay costs carries the assumption that the (positive) portion of revenue that
airlines collect in ticket sales is unaffected by GDP operations. This is reasonable given
the standard legal clause on all ticket sales that claims the airline is not responsible for
delays. Hence the maximum revenue for airline i is 0, which i receives from operating all
of its pre-GDP flights without delay. The minimum revenue for airline i is Ri(∅|Fi) < 0,
the delay cost of canceling all of i’s pre-GDP flights.

Let ti be the minimum total delay in minutes for the flights that i operates during
the GDP, and let t0 be the expected delay per passenger for a canceled flight. Intuitively,
passengers on a canceled flight will be delayed longer, on average, than passengers on
a canceled flight. Therefore t0 is greater than the longest possible delay for a pre-GDP
flight operated during the GDP. Denote the number of canceled flights for airline i by
F̂i0. Let l̂i be the average number of passengers per flight for airline i. Then l̂(ti + t0F̂i0)
is the total number of passenger minutes of delay on i’s pre-GDP flight schedule Fi.

However, the airline cares not only about delays on Fi. If delays on Fi cause pas-
sengers to miss connections, then the connections depart with empty seats, and delayed
passengers must be rescheduled on later flights. In this way, delayed flights impact other
flights as the delayed passengers continue on their journey. Hence, the delays from Fi
can be multiplied through the system. Let di be the factor by which a single passenger
delay minute is multiplied to give the total downstream effect, called the connection delay
cost factor. For small regional and private airports, di is around 1.0. For medium hub
airports, di is around 1.5. And for large hub or international airports, di is as much as
2.0.

This multiplicative factor, di, is calculated for a single flight. However, when there
are multiple flights delayed and canceled, this factor grows. This is due to the fact that
passengers arrive on one flight and connect to another. As the total number of impacted
flights grows, there is greater downstream effect of a passenger delay minute because
there are fewer rescheduling options available to the airline. For example, suppose an
airline has one delayed arrival that results in missed connections. However, the airline
has a later departure that can accommodate some of the passengers from the delayed
arrival with the missed connections. However, if that departure is delayed because that
aircraft’s arrival is delayed, then the connection delay cost factor increases. Hence, the
connection delay cost factor is given by Di = di + a(F̂i0 + F̂id), where F̂id is the number
of delayed flights for airline i and a > 0 is the marginal impact of an additional delayed
or canceled flight on the connection delay cost factor.

Therefore, the total number of downstream passenger delay minutes incurred by op-
erating the GDP slots F̂i is given by l̂[ti + F̂i0t0]Di. Finally, Chang et al. (2001) estimate
that the cost of a passenger delay minute is approximately $0.20. Hence, airline i’s
revenue (total delay cost) from operating the GDP slots F̂i is given by:

Ri(F̂i|F) = −0.2l̂[ti + F̂i0t0]Di.

Unless otherwise indicated, we use the following default values:
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• l̂ = 75, from 809 million passengers and 10.7 million flights per year as reported by
US Department of Transportation Bureau of Transportation Statistics (2009).

• di = 1, from Sherali et al. (2006)

• t0 is twice the maximum delay for any flight for any airline.

• a = .5, so that the connection delay cost factor Di ranges from 1 when zero flights
are delayed or canceled to 2.5 when three flights (the maximum number of flights
in our model) are delayed or canceled [see Sherali et al. (2006)].

This means airline i’s profit function is

πi(F̂i|Fi) = −20[ti + F̂i0t0](1 + .5(F̂i0 + F̂id))− Ci(x)

where Ci(x) gives the auction costs airline i incurs from bids x.
As a final note, we assume delay cost functions are the same for all airlines in order

to isolate the source of efficiency gains. In particular, if there are efficiency gains for slot
auctions over RBS, it is due to asymmetries in the pre-GDP schedule of flights rather than
asymmetries in delay cost functions. Allowing for asymmetric delay cost functions would
only reduce the likelihood that RBS is efficient, thereby raising the relative efficiency of
GDP slot auctions. Therefore, the assumption that all airlines have the same delay cost
function is a conservative one. If anything, it will reduce efficiency gains of slot auctions.

3.2 QR-rationality Likelihood

In most strategic settings it is reasonable to think that players seek to maximize expected
utility. However, it is also reasonable to think that players do not, in practice, always
succeed in maximizing expected utility. In the context of GDP slot auctions, such reasons
include the complexity of the network effects and the hurried environment in which air-
lines make strategic decisions. So, we would like to incorporate some notion of bounded
rationality in our PGT model of GDP slot auctions. Our likelihood model, called QR-
rationality (short for quantal response rationality), incorporates bounded rationality by
borrowing from the concept of a logit quantal response. Under the logit quantal response,
a player’s rationality is given by the degree to which that player responds optimally to
the other players’ strategies. This degree of rationality is the criterion upon which our
likelihood differentiates between q’s.

Before we formally introduce our measure of QR-rationality, we first need more nota-
tion. Let U i

q−i
be the vector of expected profits that airline i gets from each of its pure

strategy bids against the mixture q−i. We call this airline i’s environment. The logit
mixed strategy distribution for airline i facing environment U i

q−i
is

LU iq−i ,βi
(xi) ∝ eβiEq(πi|xi,j)

where Eq(πi|xi,j) is airline i’s expected profit from choosing its j’th pure strategy against
the mixture q−i. The constant βi is a measure of airline i’s rationality because as βi
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increases, the mixed strategy L assigns greater probability to those pure strategies of i
with greatest expected profit. As shown in McKelvey and Palfrey (1995), as βi → ∞,
the logit mixed strategy is a best response to q−i, i.e. it selects the strategy xi that
corresponds to the maximal element of U i

q−i
.

So given any q (with finite support), the question is how to calculate βi for each i. One
method of doing so is to find the βi that minimizes the Kullback-Leibler (KL) divergence
from qi to the logit distribution parameterized by βi. The KL divergence is a concept
from information theory that is used to measure the difference between two distributions
[see Kullback and Leibler (1951); Kullback (1951, 1987)]. The KL divergence is:

KL
(
qi(xi),LU iq−i ,βi

(xi)
)

=
∑

xi,j∈Xi

q(xi,j) ln

(
q(xi,j)

LU iq−i ,βi
(xi)

)

=
∑

xi,j∈Xi

q(xi,j) ln

(
q(xi,j)

∑
xi,l∈Xi e

βiEq(πi|xi,l)

eβiEq(πi|xi,j)

)
. (4)

By minimizing the KL divergence from qi to the logit distrbution parameterized by βi,
we are finding the logit distribution that most accurately models qi in an information
theoretic sense. Then we borrow the common interpretation of βi as i’s rationality when
playing LU iq−i ,βi

(xi) in response to q−i.

In the special case where q−i is such that all entries of U i
q−i

are identical, the QR-
rationality parameter βi can be any real number. This is the case in a mixed strategy NE
with full support. For completeness we define βi =∞ when q−i is such that all entries of
U i
q−i

are identical. In other words, when i is indifferent among his pure strategies, he is
perfectly rational by default.

This gives us the following characterization of rationality.

Definition 3.1. The QR-rationality of qi against q−i is the value of βi that minimizes
the KL distance from qi to LU iq−i ,βi

(xi), equation 4.

One potentially worrisome property of the QR-rationality parameter, that is also
shared by the logit-QRE, is that it is not invariant to positive rescalings of profits. In
other words, airline QR-rationality parameters depend on currency units.

The next question is, given the choice of QR-rationality to measure how smart airlines
are, what should the functional form of the likelihood, L (I |q), be? In other words, in
the absence of data about the particular airlines involved in the auction, how strongly
do we believe they are likely to be smart, as measured by QR-rationality? One simple
parameterized form is the following:

L (I |q) ∝
∏
i

[tanh(αiβi(q)) + 1]γ (5)

where each αi measures how much more likely i is to be smart rather than dumb. Physi-
cally, L (I |q) quantifies how likely it is that out of all auctions a set of real-world airlines

16



could have just played, that they played the auction with profit information I , given
that they chose joint mixed strategy q when they participated in that auction.

When looking at equation 5, it may be tempting to think of it as a type of averaging
of QRE’s. This is not the case. Rather, not every q ∈ ∆X is a QRE for properly chosen
β. That’s because equation 5 is defined for every q, while only an infinitesimal subset of
product distributions are logit distributions.

It should be emphasized that equation 5 is not the only reasonable choice for a QR-
rationality likelihood. In general, when predicting player behavior in a game, ultimately
the modeler must choose how to quantify their insight into how the system’s state is
related to what information they have concerning it, in terms of a likelihood. Like all
models, this likelihood must be vetted with real world data.

Ultimately, the QR-rationality likelihood describes the underlying distribution of QR-
rationalities in the set of airlines. The true distribution cannot be known with certainty,
so any functional form will be wrong. The important point is that a non-degenerate
distribution over rationalities is, in many settings, an improvement over an assumption
of perfect rationality (as in NE) or a point mass assigned to a specific imperfect ratio-
nality (as in QRE). This is particularly true for settings in which learning has not yet
converged to equilibrium, multiple equilibria exist, or computational complexities are in-
volved (which covers most real-world settings). All of the above apply to the problem of
GDP slot auctions.4

3.3 Entropic Prior

The role of the prior distribution, P (q) is to quantify our subjective beliefs about the rela-
tive probabilities of mixed strategy profiles without regard to the profit information used
by the likelihood function, L (I |q). At first glance, the task of formulating any beliefs
about a distribution of mixed strategy profiles without the benefit of utility information
may seem difficult and/or unproductive.

However based on any of several separate sets of simple desiderata, there is a unique
real-valued quantification of the amount of syntactic information in a distribution q(x)
[see Shannon (1948), Mackay (2003), Cover and Thomas (1991)]. That quantification,
the Shannon entropy of a density q, is written as S(q) = −

∑
x q(x) ln(q(x)). The entropic

prior density is written as P (q) ∝ exp(δS(q)) for real-valued parameter δ.
For δ > 0, the entropic prior assigns greater probability to mixed strategy profiles that

are more diffuse. This is attractive from a modeling perspective because it represents an
agnostic way of differentiating between q’s that have the same likelihood. More precisely,
say we have two mixed strategy profiles, q and q′, that have the same QR-rationality, and

4Since we are using QR-rationality, the choice of the form of the likelihood function has implications
for the convergence rate of Monte Carlo estimates of the posterior. This is because the QR-rationality
parameter, βi, can diverge to infinity for qi that are best responses to q−i. Infinite values of β are unlikely
a problem in practice because best response correspondences are often of measure zero in the space of
∆(Xi). However, large β are quite possible. Therefore, if L (I |q) is unbounded as β(q) grows, Monte
Carlo estimates of the posterior may never converge.
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therefore the same likelihood. With δ > 0, the posterior then favors the mixed strategy
profile that has a smaller influence on the distribution over the support of the q’s,

P (x|I ) =

∫
q

q(x)P (q|I )dq. (6)

The entropic prior is not the only candidate for prior distribution. Indeed, it just one
member of the Cressie-Read family of distributions [see Cressie and Read (1984); Read
and Cressie (1988)]. However, we adhere to the entropic prior (δ > 0) as it is consistent
with the principle of maximum entropy [see Jaynes (1957)], which can itself be derived
from the principal of insufficient reason [see Jaynes (2003)]. The principle of insufficient
reason tends that when faced with a set of possibilities that are indistinguishable based
on the data at hand, each possibility should be equally likely [see Poincare (1912)]. The
entropic prior upholds that principle because it says that for a given β̂ the mixed strategy
profile q that comes closest to putting equal weight on each pure strategy (i.e. maximizes
entropy), subject to β(q) = β̂, is the most likely.

3.4 Computational Methods

3.4.1 Sampling the Posterior

In order to make predictions about the outcome of the slot auction, we need to know
P (x|I ) from equation 6, the posterior probabilities of each of the pure strategy profiles.
More generally, researchers may want to know the expected value of any function f(q) of
the players’ strategies

E[f(q)] =

∫
∆X

f(q)P (q|I )dq. (7)

This includes expected profits, expected welfare, expected covariance, etc.
Unfortunately, we cannot evaluate the posterior in closed form for any of the likeli-

hoods discussed in this paper. Therefore, we must numerically estimate it. We use the
Monte Carlo method of importance sampling to do so. Importance sampling relies on
taking draws from a known distribution H(q) in order to estimate an unknown distribu-
tion P (q|I ). This means we need a population of mixed strategy profiles, q’s, from the
space of mixed strategy profiles, ∆X .

In GDP slot auctions, airline i’s bids, xi(j), can take on any value in [0, x̄i(j)]. So a
single qi is a vector of infinite length. For obvious computational reasons, we cannot work
directly with such vectors. Therefore, we need to discretize the space of mixed strategy
profiles. That is, the actual value of E[f(q)] is an integral over an infinite-dimensional
space, ∆X , but we want to estimate this integral over a finite-dimensional space. However,
we must be careful to do so in a way such that our estimate of the posterior approximates
the actual posterior.

Our solution is to form a population of q’s by randomly drawing mixtures of Gaussian
distributions. The q’s are drawn from the sampling distribution H(q) = H(ρ, µ,Σ), where
ρ gives the convex weights for each component of each player’s mixture, µ gives the mean
for each component of each player’s mixture, and Σ gives the covariance matrix for each
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component of each player’s mixture. Without much information about the space of joint
distributions q, it is safest to explore the space of triples (ρ, µ,Σ) uniformly. Hence, each
ρi is sampled uniformly from the Mi-dimensional simplex, where Mi is the number of
mixture components in qi. The means, µi, are sampled uniformly from the hypercube
given by lower and upper bounds µil and µih. Finally, Σj

i is the covariance matrix of the
j’th component of i’s mixture distribution. It is determined by random Jacobi rotations
of a diagonal matrix with eigenvalues λ. These eigenvalues are drawn from a uniform
distribution with lower bound λl and upper bound λh. In order to guarantee positive
definiteness of Σi

j, λl is non-negative.
Specifically, to obtain each q, we draw a mixture of truncated multivariate normal

distributions for each player,

qi(xi) =

{∑Mi

j=1
ρjiφ

j
i (xi)

Zi
if Li ≤ xi ≤ Bi

0 otherwise

where

φji (xi) =
1

2πDi/2|Σj
i |.5

exp
[
−.5(xi − µji )′(Σ

j
i )
−1(xi − µji )

]
.

and

Zi =

∫
Bi

Mi∑
j=1

ρjiφ
j
i (xi)dxi.

The constant Zi normalizes the mixture to the space of i’s allowable bids, Bi. This region
is bounded below by the origin and above by airline i’s budget. In particular, the sum of
the components of i’s bid vector will not exceed the difference between i’s minimum and
maximum possible revenue. Di is the dimensionality of i’s mixed strategy vector, i.e. the
length of xi as determined by the number of flights in the GDP schedule.

3.4.2 Estimating Statistics

Now that we have a method for sampling the posterior, it is possible to form Monte Carlo
estimates of statistics that come from the posterior.

Let qρ,µ,σ be the parameterized mixed strategy profile distribution and f(qρ,µ,σ) be
any function of qρ,µ,σ. The posterior expectation of f(·) is then:

Eρ,µ,σ[f(q)] =

∫
ρ,µ,σ

f(qρ,µ,σ)P (qρ,µ,σ|I )dρdµdσ (8)

=

∫
ρ,µ,σ

f(qρ,µ,σ)
V (qρ,µ,σ)

Z
dρdµdσ

where
V (qρ,µ,σ) = eαS(qρ,µ,σ)L (I |qρ,µ,σ)

and

Z =

∫
ρ,µ,σ

V (qρ,µ,σ)dρdµdσ
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is the normalizing constant.
As an example, choose f(q) = q. Then Eρ,µ,σ(f(q) | I ) = Eρ,µ,σ(q | I ) is the

expected mixed strategy profile. Now each mixed strategy profile q is a distribution
P (x | q). Accordingly, for this choice of f , Eρ,µ,σ(f(q) | I ) is just the posterior expected
pure strategy profile, P (x | I ).

We estimate the numerator integral in equation 8 with T i.i.d. samples

{ρ(t), µ(t),Σ(t)}Tt=0

from H. In the usual way with importance sampling [see Robert and Casella (2004)], we
write ∫

ρ,µ,σ

f(qρ,µ,σ)V (qρ,µ,σ)dρdµdσ ' 1

T

T∑
t=1

f(qρ(t),µ(t),σ(t))V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))

Similarly, we estimate the denominator integral by∫
ρ,µ,σ

V (qρ,µ,σ)dρdµdσ ' 1

T

T∑
t=1

V (qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))
.

4 Predictions and Decision-Ready Results

We confine our investigation to a situation in which there are two airlines (A and B) and
five equally-spaced pre-GDP arrival slots. The slots are at minutes 10, 20, 30, 40 and 50.
A one-hour GDP will begin ten minutes before the first slot, at minute 0. This means it
will expire ten minutes after the fifth slot, at minute 60. Hence, only these five slots are
impacted by the GDP. During the GDP, arrival capacity is reduced so that the airport
can handle at most three equally-spaced arrivals, occurring at minutes 15, 30 and 45.
The goal of a GDP slot reallocation scheme is to efficiently allocate the three slots to the
two airlines. This situation is depicted in figure 1.

The pre-GDP arrival schedule lists the airline that operates each slot, the flight that is
scheduled for each slot and the earliest runway time of arrival (ERTA) for each scheduled
flight. Table 1 provides an example. We will indicate pre-GDP arrival schedules as a
string of capital letters representing the airlines in the order of the pre-GDP schedule.
For example, we would write ABBAA to indicate the schedule in table 1. Here A has
the 10, 40 and 50 minute slots.

There are ten pre-GDP schedules in which airline A has three pre-GDP slots and
airline B has two pre-GDP slots (3-2 schedules). There are five pre-GDP schedules in
which airline A has four pre-GDP slots and airline B has one pre-GDP slot (4-1 schedules).
We do not bother with the trivial case in which airline A has all five pre-GDP slots.

4.1 Summary of Strategy and Efficiency Predictions

We first present our predictions for the bid behavior of airlines A and B under the first
and second price versions of auction 1 for all 3-2 and 4-1 schedules. We generate these
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Figure 1: An illustration of the one-hour GDP affecting five arrival slots

predictions by minimizing expected quadratic loss over the posterior. This means that
our prediction for airline i’s bid vector for a given pre-GDP schedule and price scheme is
the expected value of i’s bid vector. This is given by

E[xi|I ] =

∫
q

∫
x

dxdqxiq(x)P (q|I ),

where I contains the price scheme specification and the pre-GDP schedule in addition to
airline delay cost information. For example, for the second price auction with pre-GDP
schedule AAABB and profit functions π, we have that I = {Second Price, AAABB, π}.

Our predictions for the efficiency gain from the GDP slot auction are also generated
by minimizing expected quadratic loss over the posterior. For a given GDP schedule and
price scheme, the efficiency gain from the GDP slot auction is the expected value of total
slot auction revenue minus RBS revenue. This is given by

E[W (q|F)−WRBS|I ] =

∫
q

dq[W (q|F)−WRBS]P (q|I )

where W (q|F) is the sum of expected revenue for airlines A and B when the mixed
strategy profile is q, i.e.

W (q|F) =

∫
x

dx [RA(x|FA) +RB(x|FB)] q(x).
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Slot Airline Flight ERTA

10 A 111 0
20 B 222 10
30 B 333 20
40 A 444 30
50 A 555 40

Table 1: Example pre-GDP arrival schedule showing the airline, flight and ERTA for
each pre-GDP slot. This schedule can be summarized as ABBAA.

WRBS(F) is the sum of revenues to airlines A and B that arises from the RBS allocation
when the pre-GDP schedule is F .

Our estimates of E[xi|I ] and E[W (q|F)−WRBS|I ] are generated using the impor-
tance sampling procedure detailed in section 3.4.2 above. These estimates serve as our
predictions for slot bids and efficiency gain, and they are given for each pre-GDP sched-
ule in tables 2 and 3. The likelihood and entropic prior parameter values are as follows,
α = .5, γ = 4, δ = 1.5

First note that for some pre-GDP schedules, one of the airlines cannot use the first
GDP slot (slot 15) because its earliest ERTA is after the first slot. This means the first
GDP slot is allocated automatically to the airline that can use it. In this case, there
are no bids reported for the first slot (indicated by “-” in the table). Instead, for these
schedules, the bid vector for each airline is two dimensional rather than three dimensional.
In addition, for one of the pre-GDP schedules (AAAAB), airline B cannot use the first
or the second slot. In this special case, both slots are automatically allocated to airline
A, and the only bids reported are for the third slot. As expected, corresponding bids are
greater for the second price auction than they are for the first price auction.

We calculate average efficiency gain for each price scheme, first and second price, by
invoking the principle of insufficient reason to assume that each pre-GDP schedule is
equally likely. From that point it is trivial to average efficiency gains across schedules.
This is one example of the way in which PGT explicitly accounts for modeling risk. That
is, using the ECA, there is no way to average across efficiency gains for each pre-GDP
schedule because there is no way to average across the equilibrium sets of each schedule.

Under the assumption that each pre-GDP schedule is equally likely, we find that both
price schemes will provide efficiency gains, $105.65 for first price auctions and $149.65
for second price auctions. When tabulating efficiency gains for 3-2 and 4-1 schedules
independently, we also find significant efficiency gains for both schemes. For the first
price auction, 3-2 schedules average $97.22 and 4-1 schedules average $122.5. For the
second price auction, 3-2 schedules average $137.39 and 4-1 schedules average $174.18.
The efficiency gains are greater in every category for the second price auction. This means
that if the policy maker’s objective function equals expected total airline revenue, then

5Naturally, one could average over alternative parameterizations to properly account for the modeling
risk associated with specifying model parameters. The same can be said for the profit functions of the
airlines.
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pre-GDP Schedule airline slot 15 bid slot 30 bid slot 45 bid efficiency gain

AAABB
A - 1,031.41 823.79

143.71
B - 914.44 744.33

AABAB∗
A - 1,120.20 940.06

-404.18
B - 1,002.95 826.54

AABBA
A - 992.00 1,289.91

282.97
B - 893.78 1,079.38

ABABA
A 983.83 1,013.42 1,046.64

-107.98
B 807.81 844.61 883.34

ABBAA
A 1,026.75 1,137.16 1,101.41

420.80
B 839.65 953.31 930.72

BABAA
A 1,076.09 1,129.54 1,092.11

346.19
B 904.73 934.62 933.99

BBAAA
A - 780.65 756.18

424.19
B - 517.26 556.42

BAAAB
A 897.94 886.23 969.85

129.63
B 782.79 856.54 790.21

BAABA
A 1,066.33 1,040.94 1,066.52

-100.03
B 887.31 848.59 898.67

ABAAB
A 851.35 904.41 986.61

-163.08
B 703.51 835.76 777.99

AAAAB∗
A - - 1,049.63

-219.58
B - - 645.74

AAABA∗
A - 888.19 932.87

-705.42
B - 468.47 518.28

AABAA
A - 994.55 957.19

676.61
B - 545.53 536.95

ABAAA
A 607.42 691.51 665.92

522.23
B 338.71 398.52 403.00

BAAAA
A 663.88 690.82 663.35

338.69
B 364.62 396.78 396.46

Average First Price Auction Efficiency Gain: 105.65

Table 2: First Price Auction Estimates. An asterisk (∗) next to the schedule indicates
that the RBS allocation for this schedule is efficient. Average efficiency gain for 3-2
schedules is 97.22. Average efficiency gain for 4-1 schedules is 122.51.

she ranks the policy alternatives as SP � FP � RBS.
It is important to note that the efficiency gains presented here arise only from the

asymmetry of pre-GDP schedules. That is, we assume the same delay cost function for
both airlines, so the pre-GDP schedule is the only reason that some GDP schedules are
more efficient than the RBS allocation. Allowing for asymmetry in delay costs would
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pre-GDP Schedule airline slot 15 bid slot 30 bid slot 45 bid efficiency gain

AAABB
A - 1,330.37 983.51

239.71
B - 1,068.52 944.60

AABAB∗
A - 1,414.03 1,144.99

-238.47
B - 1,208.81 1,039.96

AABBA
A - 1,153.92 1,738.75

323.94
B - 1,203.26 1,259.25

ABABA
A 1,121.62 1,167.28 1,224.85

-103.40
B 895.29 960.56 1,006.06

ABBAA
A 1,164.50 1,341.29 1,296.91

421.16
B 968.16 1,105.17 1,056.99

BABAA
A 1,290.31 1,314.19 1,236.12

356.45
B 1,044.19 1,047.41 1,046.64

BBAAA
A - 921.53 908.74

487.60
B - 560.11 578.68

BAAAB
A 931.37 919.33 1,260.91

139.07
B 858.58 983.20 877.54

BAABA
A 1,231.00 1,176.87 1,274.05

-97.65
B 1,005.98 982.90 1,012.29

ABAAB
A 847.25 984.79 1,261.38

-154.47
B 792.27 947.56 854.72

AAAAB∗
A - - 1,284.14

-155.53
B - - 704.40

AAABA∗
A - 995.44 1,065.66

-646.90
B - 517.02 531.20

AABAA
A - 1,130.65 1,083.88

755.15
B - 578.07 552.45

ABAAA
A 659.61 787.12 769.70

548.05
B 373.10 418.73 407.62

BAAAA
A 732.41 766.77 741.82

370.12
B 389.32 404.57 407.36

Average Second Price Auction Efficiency Gain: 149.65

Table 3: Second Price Auction Estimates. An asterisk (∗) next to the schedule indicates
that the RBS allocation for this schedule is efficient. Average efficiency gain for 3-2
schedules is 137.39. Average efficiency gain for 4-1 schedules is 174.18.

decrease the likelihood that the RBS allocation is efficient and increase the efficiency
gain of the slot auction. Similarly, expanding the analysis to include more airlines and
more pre-GDP slots increases the potential for asymmetry in pre-GDP schedules. Hence,
we should also expect efficiency gains to increase as the pre-GDP schedule expands in
number of airlines and slots. Therefore, our setup with only two airlines and five pre-GDP
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slots is conservative in terms of expected efficiency gains.

4.2 Posterior Distributions and Risk Information

The PGT posterior provides much more information than the point predictions reported
in tables 2 and 3. For example, we can provide an estimate of the posterior expected
mixed strategy profile given a price scheme and pre-GDP schedule,

P (x|I ) = E[q(x)|I ] =

∫
q

dqq(x)P (q|I ).

This distribution contains a wealth of information, including risk information such as
covariance. Figure 2 below shows the marginalization of P (x|I ) into separate distribu-
tions P (xA|I ) = E[qA(xA)|I ] and P (xB|I ) = E[qB(xB)|I ] for the second price auction
with pre-GDP schedule AAABB. We display these marginalizations rather than the full
distribution, P (x|I ), because x is four-dimensional (two airlines, two GDP slots) and
cannot be displayed.
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Figure 2: Contour representation of posterior expected mixed strategies, P (xi|I ) for
i = A,B, given second price auction and pre-GDP schedule AAABB. Darker colors
represent greater probability density. Axes are in thousands.

The covariance matrix of P (x|I ) is given by

Cov(x) =

∫
q

∫
x

dqdx(x− x̄)(x− x̄)′q(x)P (q|I ),
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where x̄ is E[x|I ]. For the second price auction with pre-GDP schedule AAABB, Cov(x)
is given by equation 9. The nonzero entries tell us that, in expectation, bids appear to
be correlated across airlines. This is despite the fact that airline strategies are chosen
independently. The correlation is a result of averaging over q’s weighted by the posterior.
That is, the posterior couples the strategies of the airlines. Hence, observing airline A’s
bid tells us something, in expectation over all strategies, about airline B’s bid. This
is in contrast to what one finds under an equilibrium concept approach such as NE or
QRE. Under these approaches, there is zero correlation between the bids of airlines A
and B because there is zero uncertainty about the equilibrium mixed strategy profile, q∗.
Note that the covariance between bids from different airlines (northeast and southwest
quadrants) is smaller in magnitude than the covariance between bids from the same
airline.

Cov(x) =


V ar(xA,30) Cov(xA,30xA,45) Cov(xA,30xB,30) Cov(xA,30xB,45)

Cov(xA,30xA,45) V ar(xA,45) Cov(xA,45xB,30) Cov(xA,45xB,45)
Cov(xA,30xB,30) Cov(xA,45xB,30) V ar(xB,30) Cov(xB,30xB,45)
Cov(xA,30xB,45) Cov(xA,45xB,45) Cov(xB,30xB,45) V ar(xB,45)



=


462.66 −243.49 −96.25 85.78
−243.49 421.05 92.85 −88.85
−96.25 92.85 392.57 −202.41
85.78 −88.85 −202.41 349.86

 . (9)

Similarly we can report the posterior distribution over firm profits, P (π|I ). The
posterior distributions over airline profits for first and second price auctions are given
in figure 3 for the pre-GDP schedule AAABB. From the posterior over airline profits, it
is straightforward to calculate the variance of profits, the probability that each airline
achieves some threshold value of profits and many other policy-relevant quantities. For
example, under the second price auction, the probability that airline A earns profits
greater than −$4, 000 and airline B earns profits greater than −$3, 500 is approximately
0.2451. We get this by integrating P (π|ISP ) over the region {(πA, πB) ∈ R2 : πA ≥
−4, 000, πB ≥ −3, 500}. In point of comparison, the same probability for the first price
auction with pre-GDP schedule AABBA is 0.0016.

Figure 3 is a prime example of the way in which the PGT approach accounts for
systematic risk. In particular, figure 3 shows the posterior distribution over the expected
profits for q, i.e. π(q) = Eq[π] =

∫
x
dxq(x)π(x), where q is chosen randomly according

to P (q|I ). In contrast, the analogous distribution under the ECA is not a distribution
at all because the ECA conveys no uncertainty about the choice of q. When there is
a unique equilibrium, q∗, the ECA reports a unique, deterministic value of π(q∗). This
obviously hides the uncertainty that really exists about q and π. When there are multiple
equilibria, as is the case in GDP slot auctions, there is an equilibrium set of profits
{π(q∗,1), ..., π(q∗,E)}, but no associated probability distribution.

We also verify that expected total airline profits under second price auctions are
greater than under first price auctions for every pre-GDP schedule. Averaging across all
pre-GDP schedules, the expected difference between second price and first price profits is
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Figure 3: Contour plots of posterior distributions over airline profits π = (πA, πB) for
first and second price slot auctions with pre-GDP schedule AAABB.

approximately $1, 416.20. For 3-2 pre-GDP schedules, the expected difference is approx-
imately $1, 562.40. For 4-1 pre-GDP schedules, the expected difference is approximately
$1, 123.90.

Obviously though, it is not the case that second price slot auction profits are expected
to be greater than RBS profits, even though second price auctions are expected to be
more efficient than RBS. The reason is that, while second price auctions minimize delay
costs, the fact that it is an auction means that airlines incur the additional costs of their
bids. The auction costs do not represent a loss in efficiency like delay costs. Auction costs
are simply a transfer from the airlines to the FAA. However, for airlines, the reduction
in delay costs that result from the slot auction do not, on average, outweigh the auction
costs they incur. Therefore, second price profits are generally lower than RBS profits.

From a modeling perspective, it is informative to look at the posterior distribution
over our rationality measure β, P (β|I ). This is shown in figure 4 for the second price
auction with pre-GDP schedule AAABB. P (β|I ) is the distribution that we imply when
we specify the QR-rationality likelihood. One informative quantity that we can calculate
from P (β|I ) is the probability that both airlines have rationality greater than zero.
To find this probability, we integrate P (β|I ) over the region {(βA, βB) ∈ R2 : βA ≥
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0, βB ≥ 0}. Doing so for the distribution in 4, we get 0.9425. The interpretation is
that there is approximately a 94% chance that neither of the airlines’ strategies are anti-
rational (β ≤ 0) given the strategy of the other airline. In point of comparison, the same
probability for the first price auction with pre-GDP schedule AAABB is 0.9214.
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Figure 4: Contour plots of posterior distributions over airline rationality β = (βA, βB)
for the second price slot auction with pre-GDP schedule AAABB.

In the same way that the expected bids reported in tables 2 and 3 are statistics of the
posterior expected mixed strategy profile P (x|I ), the expected efficiency gains reported
in those tables are statistics of the posterior distribution over efficiency gains, ω,

P (ω|I ) =

∫
{q:W (q|F)−WRBS=ω}

dqP (q|I ).

Figure 5 plots the distributions over expected efficiency gains for the first and second
price auctions. These distributions are averaged over all 3-2 and 4-1 schedules. That
is, to construct the distribution for the first price auction, we find P (ω|I ) for each pre-
GDP schedule. Since there are fifteen pre-GDP schedules, each considered to be equally
likely, we summed the fifteen distributions and divided by fifteen. The distribution over
efficiency gains in the second price auction is constructed in the same way. The first thing
to note is that both distributions are bimodal around zero. This arises because the RBS
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Figure 5: Plot of the posterior distributions over efficiency gains for first and second price
auctions.

allocation is efficient for some pre-GDP schedules. For such schedules, P (ω|I ) = 0 for
all ω > 0. Similarly, the RBS allocation is the least efficient allocation for some pre-GDP
schedules. For such schedules, P (ω|I ) = 0 for all ω < 0. Averaging over all schedules
results in lower density around zero.

It should be noted that one cannot produce these plots using equilibrium concepts like
NE and QRE. To be clear, if there existed a unique equilibrium, then there would be no
uncertainty about W (q|I ). Hence, the distribution over efficiency gains would be a Dirac
delta function about the equilibrium value W (q∗), where q∗ is the unique equilibrium.
However, there are generally multiple equilibria for each pre-GDP schedule in first and
second price slot auctions. There is no principled way to average over equilibrium sets to
get a distribution over efficiency gains.

From the distributions in figure 5 we can calculate other decision-relevant statistics.
For example, as reported in table 3, the expected efficiency gains for the second price
auction are $323.94, while they are only $282.97 for the first price auction. The variance
of efficiency gains for the first price auction is approximately 163.66. The variance of
efficiency gains for the second price auction is lower at approximately 155.33. Another
important quantity is the probability of negative efficiency gains. We get this by inte-
grating the distributions in figure 5 from −∞ to 0. The probabilities are approximately
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0.3764 and 0.3760 for the first and second price auctions respectively. This means that the
probability of an efficiency loss is roughly the same for both auction schemes. However,
the probability of a loss greater than $250 is significantly higher for the first price auction
(0.1806) than for the second price auction (0.1238). On the other side, the probability of
a gain greater than $250 is significantly higher for the second price auction (0.4385) than
for the first price auction (0.3828).

5 Discussion and Conclusions

This study represents the first application of PGT to predicting strategic behavior and
evaluating risk in a real-world policy domain. PGT overcomes the shortcomings of con-
ventional equilibrium approaches and produces decision-relevant information regarding
policy risk and efficiency far beyond what is possible under conventional approaches.
This includes full distributions over airline profits, slot bids and system efficiency as well
as the statistics associated with those distributions. We account for two types of risk,
systematic risk and modeling risk. Neither can be accounted for with the ECA.

Using the PGT approach, we find that the second price GDP slot auction dominates
the first price auction in every decision-relevant category. It yields greater expected
efficiency gains with lower downside risk and greater upside potential. It also yields lower
variance in efficiency gains. Expected profits are greater under second price GDP slot
auctions than under first price auctions for every pre-GDP schedule. So it seems that
FAA policy-makers should have a strong preference for second price GDP slot auctions
over first price auctions. This is despite the fact that none of the conventional arguments
for second price auctions, such as dominant strategy implementability, even apply to
GDP slot auctions.

We also find that both the first and second price auctions have higher expected effi-
ciency than RBS. This efficiency gain arises even though we take a conservative approach
in modeling airline GDP revenue as delay costs. In particular, we assume that delay
costs are the only source of inefficiency, and we let the delay cost functions be symmetric
across airlines. Therefore, efficiency gains over RBS are solely a result of the asymmetric
pre-GDP schedules of the airlines. Introducing asymmetric delay cost functions, more
airlines and more pre-GDP slots will only increase overall asymmetry thereby decreasing
the likelihood that RBS is efficient.

Future work in this area should expand on the degree to which we account for modeling
risk. In particular, this means expanding the point estimates of airline profit functions
used in our analysis to a full-fledged distribution over profit functions. This also means
combining the particular QR-rationality likelihood model used here with models based
on concepts like level-k thinking and alternative notions of rationality, some of which are
discussed in Bono and Wolpert (2009).
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A Auction Equilibrium Analysis

We establish several fundamental equilibrium properties of the first and second price
auctions. The analysis in this section is superficial compared to the equilibrium analysis
found in most conventional auction papers. This is because we are primarily concerned
with the PGT analysis found in section 4; for all of the reasons mentioned above.

In what follows, we show that there are efficient NE of both first and second price
GDP slot auctions. We also discuss the prospect of dominant-strategy implementation
and incentive compatibility. Note that for individual rationality note that the FAA’s
procedures are required for all operating airlines. The alternative is to stop operating.
We do not address individual rationality to the extent that airlines may choose to go out
of business as a result of the implementation of GDP slot auctions. In the PGT analysis,
we can easily incorporate the “going out of business” level of airline profits as a constraint
faced by the policy maker.

We find the following restriction reasonable and useful in our analysis.

Definition A.1. A revenue function has the property of nonnegative returns if the
marginal revenue to winning additional slots is always nonnegative. Alternatively,

Ri(F̂i ∪ F̂ ′i |F)−Ri(F̂i|F) ≥ 0

for all subsets F̂ ′i of F̂ .

The property of nonnegative returns says that the revenue of operating a subset of
GDP slots does not decrease when the airline has rights to operate additional slots. Our
reasoning is that an airline can simply refuse to operate or sell the additional slots without
penalty if it finds that operating the slots is costly.

A.1 First Price Auction Equilibria

In order to discuss equilibria of GDP slot auctions in more general terms, assume the
following notation:

• let Y ⊆ F̂ with elements yj for j = {1, 2, ..., |Y |}.

• let Y (i, x) be the set of slots in Y that are won by airline i under the profile x.
That is, Y (i, x) = F̂i ∩ Y . Y (i, x)c is the complement of Y (i, x) in Y .

• let the marginal revenue of Y ⊆ F̂ to airline i under profile x be given by:

∆Ri(Y, x|F) = Ri

(
F̂i(x) ∪ Y (i, x)c|F

)
−Ri

(
F̂i(x) \ Y (i, x)|F

)
• let N(Y, x) be the set of players that win slots in Y under x.
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To explore the efficiency properties of the first price auction, we assume that the
FAA seeks to maximize the sum of airline revenues. In other words, we treat the costs
(auction payments) of the airlines as taxes. Since they are paid to the FAA, an agency
of the federal government, they enter the general pool of government spending. We also
choose not to model passenger/customer welfare. There are many notions of how the
FAA’s objectives might differ from the notion of efficiency we adopt here. However, to
facilitate the clear interpretation of results, we adhere strictly to this notion.

Theorem 1. All Nash equilibria of the first price GDP slot auction where airline revenues
exhibit nonnegative returns implement the revenue maximizing allocation.

Proof. The sum of airline revenues is:∑
i

Ri(F̂i(x)|F). (10)

Suppose x∗ is a NE that does not maximize 10. Then for some Y ⊆ F̂ , there exists an
airline i such that

∆Ri(Y, x|F) >
∑

l∈N(Y,x)

∆Rl(Y (l, x), x|F).

This means either (1) that there exists an x′i with x′i(Y ) > x∗i (Y ) such that πi(x
′
i, x
∗
−i) >

πi(x
∗
i , x
∗
−i) or (2) that there exists a j ∈ N(Y, x) and x′j with x′j(Y (j, x)) < x∗j such that

πj(x
′
j, x
∗
−j) > πj(x

∗
j , x
∗
−j). Both possibilities violate the equilibrium concept.

The above demonstrates that the first price GDP slot auction implements the revenue
maximizing outcome in all Nash equilibria. However, as with other first price auctions,
there is no dominant strategy in the first price GDP slot auction. Therefore, the revenue
maximizing outcome is not dominant-strategy implementable.

Incentive compatibility, in the context of GDP slot auctions, cannot be handled in the
usual way. Airlines bid on all slots simultaneously. However, as previously mentioned,
airline utilities are not additively separable in GDP slots. Therefore, in general, airlines
would not be able to bid their valuation for each subset of GDP slots simultaneously.

To be more concrete, for an airline’s bid vector to represent its valuation of all subsets
of GDP slots simultaneously we must have that∑

j∈Y

xi(j) = Ri(Y |F)

for all Y ⊆ F̂ . Let F̂ = |F̂ | be the number of GDP slots. Then incentive compatibility

means that each airline has a system of 2F̂−1 equations in F̂ unknowns. Given that
nonnegative returns is the only restriction on revenue, a solution does not generally exist.
Therefore, when demand interdependencies are present, the first price GDP slot auction
does not permit a Nash equilibrium in which airlines bid their valuations.
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A.2 Second Price

In addition to the notation introduced for first price auctions above, let ī(Y, x) be the
airline with the highest marginal revenue to acquiring Y under the profile of bids x that
does not win Y .

Theorem 2. There exist Nash equilibria of the second price GDP slot auction where
airline revenues exhibit nonnegative returns that implement the revenue maximizing allo-
cation.

Proof. Suppose F̂ is the number of GDP slots. Then the set of NE of the second price
GDP slot auction includes a nonempty N F̂ -dimensional polytope of profiles xe that result
in the efficient allocation.

Fix an allocation, F̂ = {F̂1, ..., F̂N}, that maximizes the sum of airline revenues. F̂i
is the set of slots allocated to airline i for all i = 1, ..., N . Profiles, xe, that satisfy the
following system of inequalities give rise to F̂ .∑

j∈F̂i

xei (j) ≥∆Rī(F̂i,xe)(F̂i, x
e)

∑
j∈F̂k

xei (j) ≤∆Rk(F̂i, xe)

for all i and all k 6= i. It follows directly that profiles that satisfy the above give rise to
F̂ .

Next, we show that such profiles are also NE. The first inequality requires that every
airline i bids so that the sum of its bids for each subset F̂i exceeds the second highest
valuation for that subset. Then, the second inequality requires that for every other subset
F̂k for i 6= k airline i bids so that the sum of its bids does not exceed airline k’s valuation
of that subset.

Together these conditions establish for all i; (i) that the marginal revenue of F̂i is
greater than or equal to the marginal cost of F̂i, and (ii) that the marginal revenue of
slots Y is less than or equal to the marginal costs of Y for all Y ⊆ F̂ not equal to F̂i.

The fact that no airline i finds it worthwhile to trade any subset of F̂i for any subset
of slots Y follows from the fact that F̂ maximizes revenue.

If n(F̂) represents the number of airlines awarded slots under F̂ , then this N F̂ -
dimensional polytope is described by n(F̂)N equations in F̂N unknowns. Since, n(F̂) ≤
F̂ , this polytope exists generically.

Unlike other second price auctions, the second price GDP slot auction is not dominant-
strategy implementable. The reason follows from the discussion of incentive compatibility
above. Suppose a dominant strategy xdi existed for player i. Then

Ri(F̂i(xdi , x−i)|F) ≥ Ri(F̂i(xi, x−i)|F)

for all x−i ∈ X−i and all xi ∈ Xi with strict equality for some pairs (xi, x−i). This means
that xdi must be optimal for airline i when x−i is such that airline i wins Y and at the
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same time when x−i is such that airline i does not win Y for all Y ⊆ F̂ . Therefore, xdi
must be the bid vector for which airline i truthfully reports its valuation of every subset
of flights. However, as already shown in the discussion of incentive compatibility, this is
not generally possible in the presence of demand interdependencies.

B Computational Issues

Here we briefly describe two computational issues that arise in PGT modeling. The first
concerns a “density of states phenomenon” that arises as the complexity of the game
grows. The second concerns the choice of QR-rationality likelihood so that Monte Carlo
estimates converge.

In many cases it will be very difficult to have any idea what the space of mixed strategy
profiles, ∆X , looks like. In particular, it will be difficult to know how to efficiently sample
this space so that we draw with high probability the types of q’s that get high probability
under P (q|I ). Therefore, we resort to a proposal distribution H(ρ, µ,Σ) that is roughly
uniform over the set of mixtures of Gaussians. This can be very inefficient. In addition,
as the complexity of the game in question grows, the inefficiency of a uniform proposal
distribution grows.

A final issue concerns the convergence of the Monte Carlo estimator given the un-
bounded nature of the QR-rationality likelihood. That is, the parameter β can vary from
−∞ to ∞. Therefore, if our Monte Carlo estimates of the posterior and its moments are
to converge, then we must worry about the specific form of the likelihood function. As
we established in the discussion of density of states above, the probability of drawing a q
with high QR-rationality under the proposal distribution H(·) can be vanishingly small.
So if the likelihood is not bounded above for large β, then the ratio

L (I |qρ(t),µ(t),σ(t))

H(qρ(t),µ(t),σ(t))

will diverge for q that give rise to large β. This would lead our Monte Carlo estimator
to have infinite variance [see Robert and Casella (2004)]. Note that the likelihood in
equation 5 is bounded above and below.
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