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Abstract

It is known that a player in a noncooperative game can benefit by publicly re-

stricting their possible moves before start of play. We show that, more generally,

a player may benefit by publicly committing to pay an external party an amount

that is contingent on the game’s outcome. We explore what happens when external

parties – who we call “game miners” – discover this fact and seek to profit from it

by entering an outcome-contingent contract with the players. We analyze various

bargaining games between miners and players for determining such an outcome-

contingent contract. We establish restrictions on the strategic settings in which

a game miner can profit, and bounds on the game miner’s profit given various

structured bargaining games. These bargaining games include playing the players

against one another, as well as allowing the players to pay the miner(s) for exclu-

sivity and first-mover advantage. We also establish that when all players can enter

contracts with miners, to guarantee the existence of equilibria it is necessary to

assume that players can randomize over the contracts they make.

We would like to thank Mark Wilber and Nicholas Shunda for helpful discussion.
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1 Introduction

1.1 How to Mine a Game

That players can benefit in games by entering contracts that distort payoff functions is

well-documented in the economic literature [see Schelling (1956); Sobel (1981); Vickers

(1985)]. In this paper we focus on a special case of this phenomenon: A player i may

benefit by publicly committing to pay an external party an amount that is contingent

on the game’s outcome. That benefit to i may or may not be accompanied by a loss to

i’s opponents. Similarly, i may benefit by publicly paying an external party to make an

outcome-contingent payment to i’s opponent in the game. In this paper we explore what

happens when external parties discover such facts and seek to profit from them.

To ground the discussion, we present two examples.

Example 1. Somali pirates hijack an oil tanker. They can get $1,000 for it on the black

market. To the oil company it is worth $2,000. The oil company can take the tanker by

force at a cost of $1,700. The pirates have a set business plan, under which they demand

a ransom of $1,500 for tankers of this size. The oil company counters that demand with

an offer of $1,100 and says that if the pirates do not accept it, then rather than pay the

$1,500 they will take the tanker by force. The pirates refuse because it is a non-credible

threat (the oil company would lose $200 by taking the tanker by force, relative to paying

the pirates what they ask). The unique Subgame Perfect Equilibrium (SPE) is for the oil

company to pay the random. Accordingly, the oil company decides to pay the ransom,

and is about to do so.

Game Mining Inc. watches this negotiation. Just before the oil company pays the

ransom, they offer the oil company the following contract, making sure the pirates see

them do this: “Pay us $399 up front, and we will keep $198 no matter what. Make your

threat again. If the pirates refuse your threat again and you take the tanker by force, we

will give you $201. Otherwise we will give you nothing.”

If the oil company were to accept this contract, then their threat would become

credible, and so the pirates would have to yield to it. Accordingly, the oil company

accepts this contract because without the contract the unique SPE yields them $500,

while with the contract the unique SPE yields them $501. The pirates lose $400 when

the oil company makes the contract. Game Mining Inc. makes $399. 3
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Example 2. There are two cell-phone manufacturers, Anonymous (A) and Brandname

(B). They must simultaneously decide how many cell phones to produce. Each firm has

two options, high output (H) or low output (L). Anonymous, like its name suggests,

is not well known. Therefore, no matter what level of output Brandname produces,

Anonymous prefers to produce high output to gain brand recognition. On the other

hand, Brandname’s choice of output does depend on Anonymous’s choice. If Anonymous

produces low output, then Brandname prefers to keep prices high by also producing

low output. However, if Anonymous produces high output, then Brandname prefers to

safeguard its recognized name by also producing high output. The moves and payoffs (in

millions of dollars) are summarized by the following matrix.

B

H L

A
H 1, .5 2, 0

L 0, 0 1, 1

The NE is (H, H), and payoffs are (1, .5).

Game Mining Inc. watches this, and just before Anonymous and Brandname declare

their output decisions, Game Mining offers Anonymous the following contract, making

sure Brandname sees them do this: “Pay us $1.5 million right now. Then we will pay

you back a certain amount after you and Brandname make your decisions. Here is how

much we will pay you, in millions of dollars, for the four possible joint decisions by you

and Brandname:”

DA =

[
0 1.01

1.5 2.0

]
.

So if Anonymous accepts the contract, then the payoff matrix becomes

B

H L

A
H 1, .5 3.01, 0

L 1.5, 0 3, 1

In the resultant game, Anonymous randomizes, and the unique NE is very close

to (2/3, H). For Anonymous, this results in an average payoff of approximately $1.5

million. This is a $500,000 improvement over its payoff without the contract. On average,
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Game Mining Inc. makes approximately $160,000 for their trouble. Brandname, on

average, makes approximately $333,333. This is a $166,666 decrease in Brandname’s

payoff compared to the situation where Anonymous and Game Mining Inc. do not have

a contract.

Note that the Coaseian outcome of the game without a game miner would be for

Anonymous to pay at least $500,001 to Brandname for the outcome (H, L) [see Coase

(1960)]. So Game Mining Inc. is not merely facilitating the Coaseian outcome. The

presence of Game Mining Inc. creates an entirely new strategic setting. 3

Note that in Ex. 1, GM Inc. could have instead offered a contract that the oil

company would accept where the oil company pays only $100 now, and then pays an

outcome-contingent extra amount later. So there may be bargaining over the details of

the contract. In that bargaining, in effect GM Inc. is asked by the oil company, “How

much do I need to pay you now in exchange for an obligation to pay you more later?” In

other words, in situations like in Ex. 1, the only burden on GM Inc. in the bargaining

is to maximize the “free money” that the player wants to give it (!). The reason game

mining scenarios can be so serendipitous to the game miner(s) is that the player benefits

from the obligation to pay the game miner(s). Therefore, the player is willing to pay for

that obligation. Similarly a player may be willing to pay the game miner not to sign a

contract with the other player for fear of the consequences that the contract would have

on the outcome of the game.

In all of these examples, Game Mining Inc. makes considerable profit from recognizing

a situation in which one party benefits from an output-contingent contract. But if Game

Mining Inc. makes a profit, then other mining firms will surely want to offer the winning

party (the oil company or the Anonymous cell-phone company, respectively) their own

contract at a lower price. Similarly, the losing party (the pirates or the Brandname

cell-phone company, respectively) might want to make contracts with miners.

This raises the issue of what happens if the game miner can offer contracts to both

players. As an example, it may be that the miner offers contracts to both players with

the following properties. First, both players have a strictly dominant strategy to accept

the offered contract. Second, when they both inevitably accept, the outcome is that they

are both worse off, and the game miner profits considerably. In fact, the game miner

may even promise to pay the players large sums of money if certain outcomes obtain,
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knowing full well that when all of the players accept the offered contracts, such outcomes

will never obtain. (To do this, the game miner effectively creates a prisoner’s dilemma

among the players for her own benefit.)

There are also considerable timing issues in game mining. When players sequentially

sign contracts with game miners, there can be a significant first-mover advantage to the

first-signing player. This provides the game miner with yet another opportunity for profit;

they can charge the players to move first.

It’s also worth noting that in many mining scenarios, mixed contracts are needed

to guarantee the existence of equilibria. With such contracts, players have uncertainty

about their opponent’s payoffs. However, unlike in Bayesian Nash equilibrium, in game

mining this uncertainty is resolved before the game is played. Its only role is to make

the players indifferent among their own contracts. That is, a player will say, “Given

that you will select a contract (and therefore an ultimate payoff function) according

to that probability distribution, I am indifferent among the following contracts (and

therefore ultimate payoff functions). So I will randomize over them with this probability

distribution, which in turn makes you indifferent among the contracts in the support of

your probability distribution.”

1.2 Related Literature

The ideas underlying the game mining concept are implicit in a large body of economic

literature. As an illustration, in the model presented in Jackson and Wilkie (2005) (JW),

every player specifies outcome-contingent side-payments that they will make after a non-

cooperative strategic form game is played and the payoffs are resolved. These side-

payments are binding contracts, so the players are ex ante determining their preferences

over the game’s outcomes. In this regard the game that the players actually play is

endogenously determined. JW examine whether a mechanism that allows players to

make such outcome-contingent side-payments generally results in efficient outcomes and

conclude that it does not.

The simplest game-mining scenario, e.g., in Ex.’s 1 and 2, can be viewed as a special

case of JW. In this special case, the only outcome-contingent side-payments are between

the players and the game miners and the game miners would be indifferent over outcomes

of the game if not for the fact that they will be receiving side-payments dependent on

those outcomes. Furthermore, the game miners play no part in the game between the
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players other than to accept contracts for outcome-contingent side-payments and make

the contracts public.

In contrast to JW, we do not focus on efficiency issues, and we do not assume that

a social planner installs a mechanism for players to make side-payments. Instead, we

look at a game without formal mechanisms and ask whether external parties will create

contracts for outcome-contingent side-payments in pursuit of profit. In particular, we

examine the implications of giving the game miner the power to offer contracts, which

will in general increase the game miner’s profits. In addition, we relax the assumption

in JW that all side-payments are nonnegative. That is, we allow game miners to pay

players for certain outcomes. This will be important when examining optimal contracts

as well as the extent to which a monopolist game miner can extract profits from players.

We also consider how things change when there is more than one miner, when mining

contracts are offered in sequence, etc. None of those issues arise in JW.

In another related paper, Renou (2009) analyzes what happens when players are able

to embed the original game in a new two-stage game. In the second stage of that new

game the players play the original game. However before they do so, in the first stage, the

players each simultaneously commit not to play some subset of their possible moves in

that game in the second stage. These commitment games can be seen as another special

case of JW in which (1) player i’s side-payments are only contingent on i’s action (rather

than on the full profile of actions), (2) the side-payments are made to external players

and (3) the side-payments are effectively infinite. Renou’s analysis does not apply to the

full game mining scenario. This is because there are many circumstances in which both

the player and the game miner prefer to make contracts that are fully outcome-contingent

and that have non-infinite side-payments. One particular example is when the player and

game miner find it optimal to agree on a contract that results in an equilibrium where

the player uses a mixed strategy with full support (and therefore does not make any

commitment in the first stage of Renou’s two-stage game).

The idea that there might be pre-game play in which players make choices to affect

their own preferences over outcomes is also present in Wolpert et al. (2008). The authors

analyze the idea that experimentally observed non-rationality is in fact rational, because

by committing to play the game with a non-rational “persona”, a player may increase her

ultimate payoff. This persona has the same effect as a side-payment or commitment, as

it is reflected in a temporary change to the player’s utility function. The persona games
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model has been successful in explaining non-rational behavior in non-repeated traveler’s

dilemma and even in versions of the non-repeated prisoner’s dilemma.

There is a subset of the principal-agent literature concerning delegation games that

is closely related to game mining. In these models, the principal is able to contract

with an agent that will engage in a game with the principal’s opponent (or agent of the

principal’s opponent). One concern of this literature is detailing the optimal contract for

a principal [see Vickers (1985); Fershtman (1985); Sklivas (1987)]. Another concern is

whether a mechanism that allows specific types of contracts can lead to Pareto efficiency

[see Fershtman et al. (1991); Katz (1991)]. Game mining is closely related to a previously

unexplored aspect of principal-agent scenarios: the degree to which the agents can profit

from delegation contracts.

Finally, our work is related to the general literature on commitment in games be-

cause, at its core, game mining is about what happens when players benefit by strate-

gically restricting themselves. One well-studied aspect of commitment is the role of

timing. Papers such as Hamilton and Slutsky (1990), van Damme and Hurkens (1996)

and Romano and Yildirim (2005) concern endogenous timing and Stackelberg-like com-

mitments. Another area of study is the role of commitment in repeated games. In their

study of finitely repeated games, Garcia-Jurado and Gonzalez-Diaz (2006) introduce a

weakening of SPE called virtual subgame perfect equilibrium. Kalai et al. (2007) also

study commitment in finitely repeated games, but do so in a manner similar to JW. That

is, they are concerned with the role of commitment in bringing about efficiency.

1.3 Overview

We start by introducing the game-mining model and notation. We then analyze the ways

in which games can be mined.

Next, in Sec. 2, we assume that only one player interacts with one game miner. We

derive bounds on the aggregate payoffs that the game miner and player can earn together.

We show that they can select a contract to divide these payoffs in any way between them.

We also show that outcome-contingent contracts cannot be profitable for both the game

miner and contracting player if the other player has a strictly dominant strategy.

In the rest of the paper we consider various market structures, i.e., various structured

bargaining games involving the players of the underlying noncooperative game and one or

more external firms trying to mine that the players of that underlying game. First, in the
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next section we analyze a structured bargaining game between two players and a single

game miner (i.e. a monopolist firm that handles all outcome-contingent contracts). We

begin with the assumption that players offer contracts to the game miner and the game

miner must choose either one of the offered contracts or neither contract. We show that

the game miner can profit by more than the maximal payoff to either player in the game

without contracts. (This is because players can suffer a loss if their opponent outbids

them for the right to contract with the game miner.)

Next we relax some of these assumptions. First we allow the game miner to accept

both offers if she so chooses. This reduces the game miner’s bargaining power, and we find

that the game miner can always do at least as well by restricting herself to accept only

one contract. Next we discuss the role of timing and first-mover advantage, establishing

that the players may be willing to pay for the right to contract first with the game miner,

even when their opponent has a strictly dominant strategy.

We end this section by analyzing the case where the miner has the bargaining power,

i.e., she is the one making the offers. We show that this allows the game miner to “play

the players against one another” and thereby increase her profit. We also derive an upper

bound on this profit.

In section five we look at perfect competition and duopoly miner market structures.

We develop the notion of best contract response correspondences and mixed contracts to

discuss the existence of equilibria when players simultaneously choose contracts. We also

detail the way in which a duopolist game miner’s profits depend on the game that arises

as a result of contracts.

In section six we briefly discuss several new research areas opened by game-mining.

These areas include games of more than two players, and risk aversion on the part of the

game miner. We also briefly consider unstructured bargaining among the players and the

miner to determine the contract. We also touch on an “inverted” version of this topic,

where the underlying game is itself unstructured, while the miner(s) negotiate with the

player(s) via structured bargaining to determine a contract for that underlying game.

We also discuss the idea that one player signs a contract that obligates him to pay the

other player outcome-contingent amounts. This obligation may actually help the payer

and hurt the payee.
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2 Notation

We study a two-player, one-stage simultaneous-move game of complete information. How-

ever, we relax the usual assumption that the two players cannot make outcome-contingent

contracts (or simply contracts) with players external to the game.

Specify the two-player pre-contract game as Γ = ({A,B}{XA, XB}, {UA, UB}). Ui is

an |XA|-by-|XB| matrix for which the (m,n) entry gives the payoff to i when A chooses

his m’th pure strategy and B chooses his n’th pure strategy. Player i’s set of mixed

strategies is ∆i, i = A,B, and the set of mixed strategy profiles is ∆ = ∆A × ∆B. We

write all of i’s pure and mixed strategies as |Xi|-by-one vectors σi for which the m’th

entry gives the probability that σi assigns to playing i’s m’th pure strategy. Therefore,

we can write player i’s expected payoff from σ = (σA, σB) as

Eσ(Ui) = σT
AUiσB

where superscript−T indicates matrix transpose.

Player i’s best response correspondence is given by RΓ
i (·) : ∆j → 2∆i , so that

RΓ
A(σB) = {σA ∈ ∆A : σT

AUAσB ≥ σ′TA UAσB ∀ σ′A ∈ ∆A}. (1)

Therefore, the set of Nash equilibria of game Γ is given by

NE(Γ) = {(σA, σB) : σA ∈ RΓ
A(σB) and σB ∈ RΓ

B(σA)}.

An outcome-contingent contract between player A and an external player C is a matrix

DA that specifies a (possibly negative) transfer from A to C for every outcome of Γ. We

refer to player C as the game miner, and if players use strategies (σA, σB), then under con-

tract DA player A expects to pay σT
ADAσB to player C. Hence, defining UDA

A ≡ UA−DA,

player A’s expected payoff is σT
AUDA

A σB. Therefore, we can view DA as a transformation

of Γ. We write the post-contract game as Γ(DA) = {{A,B}, {XA, XB}, {UDA
A , UB}}. We

write the set of possible contracts as D = R|XA| × R|XB |. The notation D0 denotes the

null contract, where all entries are zero.
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3 Maximal Mining

Before introducing a formal strategic setting for game mining in the next section, we

first explore the way that a player A and game miner C can work together to extract

gains from Γ. We will first need to know the aggregate payoffs from a contract. These

are the amounts that the contracting parties can earn in equilibrium and divide among

themselves. Suppose A and C are the contracting parties and DA is their contract. Then

the aggregate payoff that is apportioned between A and C is given by the payoff that A

gets at a NE in Γ(DA) before A pays to C the amount specified in DA.

Definition 1. The aggregate payoff set for A and C from DA is:

MA(DA) = {σT
AUAσB : (σA, σB) ∈ NE(Γ(DA))}

We denote by M∗
A(DA) the maximum of the aggregate payoff set from DA. The

maximum over all aggregate payoff sets isMA ≡ maxDA∈D{M∗
A(DA)}. It is the maximum

that A and C can possibly have to divide among themselves in any NE of any game in

which they sign a contract. We refer to this quantity as the maxagg (maximum aggregate

payoff). The maxagg is the subject of our first result.

Theorem 1.

MA = max
σA,σB

{σT
AUAσB : σB ∈ RΓ

B(σA)}. (2)

Proof. From the definition of maxagg we have:

MA = max
DA

{max{σT
AUAσB : (σA, σB) ∈ NE(Γ(DA))}} (3)

Recall that the contract DA does not affect B’s payoffs UB. This means that NE(Γ(DA)) =

{σ ∈ ∆ : σA ∈ R
Γ(DA)
A (σB) and σB ∈ RΓ

B(σA)}. The trouble is to choose DA so that

A’s best response correspondence meets B’s best response function at the maximizers

that correspond to MA, (σA, σB). This problem is solved trivially by choosing DA such

that A is indifferent among all strategy pairs. Then every action of A is a best response

to every action of B, including σB, which, by assumption is in RΓ
B(σA).

So equation 3 becomes

MA = max
DA

{max{σT
AUAσB : σB ∈ RΓ

B(σA)}},
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which is the same as equation 2 because the set {σT
AUAσB : σB ∈ RΓ

B(σA)} is independent

of DA.

So to find the maximum aggregate payoffs for A and C, we simply search B’s best

response correspondences to all of A’s moves for the one giving maximum payoff to

A. This allows us to restrict our analysis to the values of UA along B’s best response

correspondence. Note how this differs from the NE concept: Here A has the freedom

not to be forced to make his best response to B. Only B is being forced to make a

best-response.

We do not mean to imply that maxagg is some reasonable refinement of a NE. By

definition of maxagg, such a claim would imply that the players coordinate on the NE

that most benefits A. Instead, maxagg is nothing more than an upper bound on what is

possible for A and C to obtain by making a contract.

In the real world, a game miner would be concerned with downside risk of any given

contract. That is, the game miner would be reluctant to sign a contract DA if the

game Γ(DA) has NE in which C loses money. Now consider the Subgame Perfect Nash

Equilibrium (SPE) concept applied to the extensive form game in which C first decides

whether to accept a given contract DA, and then the associated underlying game Γ(DA) is

played if C accepts the contract. Under that equilibrium concept, when deciding whether

to accept DA, C knows what NE of Γ(DA) would be played if C accepts. Hence, under

that concept, C is only concerned with her payoff as prescribed by the strategies of A and

B in some single associated NE of Γ(DA) (see analysis below of SPE of game mining). In

the real world though, if Γ(DA) contains multiple NE, the a game miner does not know

with certainty which NE of Γ(DA) would be played if C accepted the contact DA. Due

to this, in the real world, a “conservative” game miner C might choose a contract that

maximizes the minimum aggregate payoff to be divided between A and C, to minimize

how bad the situation for C could be a “worst case” NE of Γ(DA).

We write this minimum of the aggregate payoff set MA(DA) as MA(DA). Maximizing

MA(DA) over all contracts DA, we get the maximum minimum aggregate payoff MA,

called the maxminagg :

MA = max
DA

min
σ
{σT

AUAσB : σ ∈ NE(Γ(DA))}.

Trivially, MA ≥ MA(D0). Comparing maxminagg with maxagg, we also know that

MA ≤MA. And when there exists a contract DA such that MA(DA) = {MA}, we have
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that MA = MA. That is, if there exists a contract DA such that the only NE of Γ(DA)

yields the maxagg to A and C, then the maxagg and maxminagg are the same.

The next example uses maxagg and maxminagg to illustrate a distinction between

general game mining and commitment games.1 In this example, maxagg is associated

with a NE σA that is a mixed strategy with full support. However in this example, a

commitment by A to play (or not play) certain pure strategies will never allow A and C

to achieve the maxagg; communication games are a restricted subclass of game mining.

On the other hand, contracts that achieve the maxagg also give rise to a NE with an

aggregate payoff lower than maxagg. This mean that we would not expect a conservative

miner to choose that maxagg. To address this. we show that there are contracts that yield

a unique NE for which the aggregate payoff is arbitrarily close to the maxagg. Because

the NE is unique, this aggregate payoff is the maxminagg of concern to a conservative

miner. Hence even a conservative miner would want a contract that causes σA to be fully

mixed, so that A would not make any commitment.

Example 3. Consider again the game Γ presented in Ex. 2 above:

l r

t 1, .5 2, 0

b 0, 0 1, 1

where A is the row player. Write p ≡ σA(t). Then B’s best response correspondence is

RΓ
B(p) =





l if p > 2
3

r if p < 2
3

q ∈ [0, 1] if p = 2
3
.

If A chooses p < 2
3
, then B will choose r, and the payoff to A will be 2p+1(1−p) = 1+p.

Likewise, if A chooses p > 2
3
, then B will choose l, and the payoff will be p. If A chooses

p = 2
3

then B chooses any combination of l and r yielding payoffs to A between 2
3

and
5
3
. Therefore, the maximum payoff for A along RΓ

B is when σA = (p, 1 − p) = (2
3
, 1

3
) and

1Commitment games, in which a player commits before the game not to play certain pure strategies,
are a special case of game mining, where only contracts that result in one or more strictly dominated
moves by A are allowed.
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σB = (0, 1):

MA = σT
AUAσB =

[
2
3
1
3

]T [
1 2

0 1

][
0

1

]
=

5

3
.

In other words, the maxagg payoff for A and C is achieved by a mixed strategy. The

problem is that there is no contract DA such that Γ(DA) has a unique NE with maxagg

the payoff to A. Moreover, for those DA’s such there is a NE of Γ(DA) with A’s payoff

equaling 5/3, there are other NE with A’s payoff less than 1. 1 is also A’s payoff in every

NE of Γ, so it would appear that A has no incentive to form a contract with Game Mining.

However, there are contracts that produce a unique NE under which the aggregate payoff

is arbitrarily close to the maxagg. An example of a contract that gets arbitrarily close to

the maxagg is

DA =

[
1.5 .5− ε

0 −.5

]
.

With this contract A’s payoffs are now given by

UDA
A =

[
1 2

0 1

]
−

[
1.5 .5− ε

0 −.5

]
=

[
−.5 1.5 + ε

0 1.5

]

There is a unique NE for all ε > 0. As ε approaches zero, that NE approaches (2/3, r), so

the maxminagg approaches 5/3. Finally, we note that the Coaseian outcome is for A to

pay B to play r for a price of .5+ε′ for some small ε′. This differs from the outcome under

game mining. This illustrates that game mining is not just a way to facilitate Coaseian

outcomes when players cannot directly cooperate. Rather the presence of a game miner

transforms the strategic setting in a way that cooperation cannot.

means that this Coaseian transaction cannot take place. Therefore, in this example,

the game miner provides a service that the players could not provide themselves. 3

The maxminagg is a reasonable concept, especially when the game miner cannot know

for certain which of multiple NE will be played by the players. However, in this paper

we will rely exclusively on the SPE concept applied to extensive form games where the

contracts are chosen before the underlying game is played. This concept requires that

when choosing a contract the game miner knows which of multiple NE will be adopted by

the players in the following, underlying game. Accordingly, SPE says that the miner can

perfectly forecast which NE of the underlying game gets played. Whether or not such
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perfect forecasting is realistic — and it arguably is not —- it is demanded by the SPE

concept. Therefore, from now on, with few exceptions we depart from the maxminagg

concept, leaving for future work an analysis of game mining that incorporates maxminagg

more fully.

The preceding results consider what A and C can achieve together. However, through-

out the remainder of the paper, we will be interested in the profits that the game miner

is able to extract from the strategic situation given by Γ. Therefore, we now address the

way in which A and C are able to divide aggregate payoffs. The following result says

that they are able to incorporate any division of the aggregate payoffs directly into the

contract without affecting the best response correspondence of A or B. (Whether A and

C would accept such a division is a different issue.)

Theorem 2. For any a ∈ R and σ∗ = (σ∗A, σ∗B) such that σ∗B ∈ RΓ
B(σ∗A), there exists a

contract D∗
A such that:

1. (σ∗A, σ∗B) ∈ NE(Γ(D∗
A)), and

2. σ∗TA U
D∗A
A σ∗B = a.

Proof. By theorem 1 there exists a contract DA such that (σ∗A, σ∗B) ∈ NE(Γ(DA)). Let

1 stand for a matrix all of whose entries are 1. So (σ∗A)T 1σ∗B = 1. Therefore there is a

scalar x ∈ R such that (
σ∗TA (UA −DA − x1) σ∗B

)
1 = a1.

This gives us D∗
A ≡ DA + x1. Since U

D∗A
A = UDA

A − x1, (σ∗A, σ∗B) ∈ NE(Γ(D∗
A)).

Theorem 2 says that the aggregate payoffs that A and C get by mining are not affected

by a restriction on the way in which A and C divide those payoffs. So how MA is divided

between A and C in equilibrium will be determined by strategic rather than technical

considerations. This will be convenient when we introduce a formal strategic environment

in the next section.

In some settings, there is no contract such that A and C can both benefit in any NE

of the post-contract game. One example where this is always the case is when B has a

strictly dominant strategy. The intuition is that A’s contract with C will never change

B’s payoffs. Therefore, B will always play his dominant strategy, no matter what the

contract. Therefore there is nothing that a contract can do to help A. This intuition is

formalized in the following result.
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Theorem 3. If B has a strictly dominant strategy, then there is no contract DA such

that A and C both strictly benefit in any NE of Γ(DA).

Proof. Suppose x̃B is a strictly dominant strategy for player B. Then x̃B = R
Γ(DA)
B (σA) =

RΓ
B(σA) for all σA ∈ ∆A. Hence the set of NE in Γ is

{σ∗ ∈ ∆ : σ∗A = argmax
σA

σT
AUAx̃B and σ∗B = x̃B}

and the set of NE in Γ(DA) is

{σ̃ ∈ ∆ : σ̃A = argmax
σA

σT
AUDA

A x̃B and σ̃B = x̃B}.

If C benefits by entering contract DA, then σ̃T
ADAx̃B > 0.

But this means that σ̃T
AUAx̃B > σ̃T

AUDA
A x̃B. Since σ∗TA UAx̃B ≥ σ̃T

AUAx̃B, by combining

we have σ∗TA UAx̃B > σ̃T
AUDA

A x̃B for all σ∗, σ̃. Accordingly, A will not benefit by signing

DA.

Theorem 3 puts a restriction on the set of games Γ in which A will benefit from

the services of a game miner. However, as is shown in later sections, there are ample

opportunities for a game miner to profit from situations in which player B has a strictly

dominant strategy. In general, such a situation requires that B also has an opportunity

to make a payoff-contingent contract with the miner.

The next result establishes limits on game mining of interest to a “conservative”

miner, when one player has a weakly dominant strategy.

Theorem 4. If B has a weakly dominant strategy, then there is no contract DA such that

both A and C strictly benefit in every NE of Γ(DA) compared to not signing any contract.

Proof. By contradiction. Suppose x∗B is weakly dominant and DA is a contract such that

both A and C benefit in every NE of Γ(DA). There is a NE (x∗A, x∗B) of Γ. For every

xA ∈ XA we have that

xT
AUAx∗B ≤ x∗AUAx∗B.

If A is better off in every NE of Γ(DA), then for xA ∈ R
Γ(DA)
A (x∗B)

xAUDA
A x∗B > x∗AUAx∗B
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which implies

xADAx∗B < 0

which in turn contradicts the fact that C is better off.

Theorem 4 tells us that A and C cannot eliminate the risk of loss in a NE of Γ(DA)

if B has a weakly dominant strategy in such a game. If A and C are both conservative

and require that they gain in every NE of Γ(DA), then no contract will be made between

them.

4 Monopolist Miner

4.1 C Accepts One Contract

Consider a situation in which players A and B encounter each other in a simultaneous

move game with perfect information, Γ = 〈{A,B}{XA, XB}, {UA, UB}〉. There is only

one external party, C, that is willing to accept publicly observable outcome contingent

contracts. Before A and B play Γ, they simultaneously offer contracts to C. These

contracts are called DA and DB respectively.

After observing DA and DB, C chooses either DA, DB or D0 (the null contract).

Players A and B observe this contract and recognize its legally binding nature. A and B

then engage in the simultaneous move game Γ(Di). Γ(Di) is the post-contract subgame.

Formally, this is a perfect information extensive form game with three stages:

Stage One: Players A and B simultaneously offer contracts DA and DB to C.

Stage Two: C chooses DA, DB or the null contract D0.

Stage Three: Players A and B play Γ(Dj).

A strategy Si for i = A,B in the extensive form game is a pair Si = (Di, si). The

first component, Di ∈ D, is the offer that i makes to C in the first stage. The second

component is a function from the space of all possible contracts, D, to the space of

probability distributions over actions x and y, i.e. si : D 7→ ∆i. In other words, si gives

i’s strategy for every possible post-contract subgame. The profile of strategies of player

A and player B are written as S−C where s−C = (sA, sB).
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In stage two, C selects an element of the choice set DC = {DA, DB, D0}. SC is the

function that takes as input the history (DA, DB) and returns an element of DC as C’s

choice. Note that DC is specified by s−C = (sA, sB).

Given a full strategy profile (SA, SB, SC), C’s payoffs are

UC(SA, SB, SC) = sA(SC(DA, DB))T SC(DA, DB)sB(SC(DA, DB)).

SC(DA, DB) is C’s stage two choice given the stage one actions (DA, DB), and sA(SC(DA, DB))

is A’s stage three reaction to that choice. For i = A,B, the payoffs are

Ui(SA, SB, SC) = sA(SC(DA, DB))T U
SC(DA,DB)
i sB(SC(DA, DB)),

where U
SC(DA,DB)
i gives i’s payoffs in the post-contract game Γ(SC(DA, DB)). As short-

hand, we represent this extensive form game as

ΓC = 〈{A,B, C}, Γ, {Si}B
i=A,SC , UC〉.

Definition 2. A subgame perfect equilibrium (SPE) of ΓC is a strategy profile S =

(SA, SB, SC) such that:

1. (sA(D), sB(D)) ∈ NE(Γ(D)) for all contracts D ∈ R2 × R2.

2. SC is optimal given s−C for all pairs (DA, DB), i.e.

sA(SC(DA, DB))T UC(SC(DA, DB))sB(SC(DA, DB)) ≥
sA(S ′C(DA, DB))T UC(S ′C(DA, DB))sB(S ′C(DA, DB))

for all S ′C .

3. DA is optimal given SC , sA and SB, i.e.

sA(SC(DA, DB))T UA(SC(DA, DB))sB(SC(DA, DB)) ≥ ...

sA(SC(D′
A, DB))T UA(SC(D′

A, DB))sB(SC(D′
A, DB))

for all D′
A (mutatis mutandi for B).

We turn our attention to finding the maximum amount that can be mined from Γ. To
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do so, we introduce a concept that is related to the aggregate payoff set from definition

1:

Definition 3. The aggregate payoff function for A and C from DA is:

mA(DA|s−C) = sA(DA)UA(DA)sB(DA).

The aggregate payoff function differs from the aggregate payoff set. Whereas the

aggregate payoff set includes payoffs for all NE of Γ(DA), the aggregate payoff function

simply returns the sum of A and C’s payoffs when s−C is played in Γ(DA). For example, if

s−C selects a NE of the post-contract subgame Γ(DA), then the aggregate payoff function

mA(DA|s−C) selects one element from the aggregate payoff set MA(DA). We denote by

D̂i a contract that maximizes A’s aggregate payoff function. We denote by DA the set of

all such maximizers.

In an SPE, C will choose whichever contract yields her the highest payoff as deter-

mined by (sA, sB). Given that, i’s contract should offer more to C than is offered by j’s

contract only if j’s contract offers less than mi(D̂i|s−C) − sA(Dj)
T UisB(Dj). The most

that i will ever be willing to offer C is therefore determined by finding the contract of

j that results in the smallest payoff for i, called Dj. Following this logic reveals that,

loosely speaking, C will contract with the player that has the greatest willingness to pay.

In other words, there will not be an SPE in which C accepts a contract from one player

while the other has a greater willingness to pay. From the players’ willingness to pay, we

get the maximum SPE payment to C in the following theorem.

Theorem 5. The maximum SPE payment to C is

ŪC = max
i
{Mi − min

σA,σB

{σT
AUiσB : σi ∈ RΓ

i (σ−i)}}

Proof. First, let Dj(s−C) = argminDj
sA(Dj)

T UisB(Dj). That is, Dj is the contract that

minimizes i’s payoff given s−C . The proof follows from the strategic considerations of the

players. Either (1) neither player pays C, or (2) player i pays C. In the case of (2), i will

offer C no more than necessary, which is the minimum increment above what C would

get by accepting j’s offer, Dj. Player i will only be willing to pay this amount if it is less

than the amount that she gains by changing the game from Γ(Dj) to Γ(Di),

δi(Di, Dj|s−C) = mi(Di|s−C)−mi(Dj|s−C).
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This is the difference between i’s payoffs in Γ(Dj) and Γ(Di). This difference is maximized

by choosing Dj to minimize i’s payoff in Γ(Dj) and choosing Di to maximize i’s payoff

in Γ(Di). Given s−C , these arguments are Dj and D̂i respectively. So we have that the

maximum i will pay in an SPE of ΓC given s−C is δi(D̂i, Dj|s−C).

Maximizing i’s payoff over all functions s−C and contracts Di we get the maxagg

Mi. Minimizing i’s payoff over all functions s−C we get mins−C
Dj(s−C) where the

minimizer si
−C = argmins−C

sA(Dj(s−C))T UisB(Dj(s−C)) yields Dj(s
i
−C). However, we

know that since si
−C is part of an SPE, that si

−C(Dj) is a NE of Γ(Dj). Therefore,

si
i(Dj) ∈ RΓ

i (si
j(Dj)). In other words, the only requirement in constructing si

−C is that i

is always playing a best response. This is because Dj can be such that si
j(Dj) is a best

response to i. Therefore,

si
A(Dj)

T Uis
i
B(Dj) = min

σi,σj

{σT
AUiσB : σi ∈ RΓ

i (σj)}.

Putting this together with i’s maxagg and choosing i we get the result.

Theorem 5 gives an upper bound on the amount that the monopolist game miner can

extract from the game. This amount is bounded by the players’ payoff functions. So

a monopolist game miner cannot, in this situation, extract arbitrary profits. However,

the SPE concept here allows for some behavior that is unreasonable from a trembling

hand perspective. For example, in order for C to achieve her maximum payment, it

may be necessary for A to offer just under B’s maximum willingness to pay, MB −
minσA,σB

{σT
AUBσB : σB ∈ RΓ

B(σA)}, to C for the contract DA. This is despite the fact

that A might prefer the outcome under D̂B to the outcome under DA. That is, A offers

quite a bit of money to C for a deal she wants not to take effect. A’s offer is only a

best response to B’s slightly greater offer because C will choose B’s contract, so that this

unreasonable offer by A, DA, will never be accepted by C. But if C trembled and chose

DA, the outcome could be disastrous for A. In short, for some ΓC , there exist SPE in

which C achieves her maximum payoff only if one of the players acts in a manner that

seems unreasonable.

This suggests that a more reasonable set of outcomes is one in which players will

only offer contracts D̂i (i = A,B) such that mi(Di|s−C) is maximized. That is, players

will maximize the aggregate payoff function regardless of the way in which that money

is divided. They would do this because at least one D̂i ∈ D̂i is a best response to every
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Dj and s−C . The following flow diagram illustrates how these strategies would translate

into the monopolist miner’s payoffs. Let

δi(Di|s−C) = mi(Di|s−C)−mi(D0|s−C)

be the change in i’s payoff by going from Γ to Γ(Di). Similarly define

δi(Di, Dj|s−C) = mi(Di|s−C)−mi(Dj|s−C)

as the change in i’s payoff by going from Γ(Dj) to Γ(Di). Positive quantities represent

proportional movements in the direction of the associated arrow.

Γ(D̂B)

δA(D̂A, D̂B)

δB(D̂B, D̂A)

Γ(D̂A)

Γ

δB(D̂B)δA(D̂A)

δA(D0, D̂B)

δB(D0, D̂A)

This shows how the players’ willingness to pay affects the outcome as long as the

players are not acting in the unreasonable manner described above (i.e. offering more

than their willingness to pay). So if δB(D̂B) > 0, we know that B is willing to pay to

change the game from Γ to Γ(D̂B). Hence, Γ will not be the post-contract subgame in an

SPE. Next, if δB(D̂B, D̂A) > δA(D̂A, D̂B) > 0, then B is willing to pay more to change the

game from Γ(D̂A) to Γ(D̂B) than A is willing to pay to change it from Γ(D̂B) to Γ(D̂A).

B will offer C a contract such that C’s payment is just greater than A’s is willing to pay

to change the game from Γ(D̂B) to Γ(D̂A). In some games, the restriction that players

choose only contracts from Di (i = A, B) will decrease C’s maximium SPE payoff.

Another implication of theorem 5 is that C’s payoff can be greater than max{MA,MB}.
In other words, the winning contract may pay C more than the maxagg for either player.

The following example illustrates how a monopolist miner can make both players worse
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off than they were without the opportunity to mine. We demonstrate that this is the case

even when players are restricted to choosing contracts that maximize aggregate payoff

functions.

Example 4. Consider the game Γ:

x y z

x −1, 2 −1, 3 0, 0

y −1,−1 0, 0 3,−1

z −1,−1 −1,−1 2,−1

where A is the row player. There is one pure NE (y, y) of Γ. Calculating the A’s aggregate

payoff function for D̂A, D̂B and D̂0 as well as A’s willingness to pay, we get:

mA(D̂A|s−C) = 2, mA(D̂B|s−C) = −1 and mA(D0|s−C) = 0

⇒ δA(D̂A, D̂B) = 3 and δA(D̂A) = 2

By symmetry the quantities for B are the same as the corresponding quantities of A.

The fact that δi(D̂i) = 2 > 0 for i = A, B means that both players are willing to

pay to change the game from Γ to Γ(D̂i), so D0 will not be the outcome. Next, because

δi(D̂i, D̂j) = 3 > 0 for i = A,B, we know that C will get a payoff of δi(D̂i, D̂j) = 3 in

equilibrium. This payoff is greater than Mi − mA(D0|s−C) = 2. In other words, if i’s

contract is accepted, then the contract between i and C pays C more than the increase in

aggregate payoffs Mi −mA(D0|s−C) = 2. The reason is that i is paying to avoid having

Γ(D̂j) become the equilibrium game.

We also observe that sA(D̂i)
T UDi

i sB(D̂i) = −1 < 0 = mA(D0|s−C). This says that i

gets less by having the equilibrium contract with C than i would get if neither player had

the opportunity to offer contracts. For j, the player that does not win the equilibrium

contract, the SPE payoff is also −1. Therefore, the winner and the loser are both made

worse off by the opportunity to mine 3

4.2 C Accepts Both Contracts

We now relax the assumption that C must choose between DA and DB. After all, if

C is a true monopolist game miner and there are gains to be made by simultaneously

contracting with both parties, then C will certainly want to do this.
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The strategies in ΓC must be modified to accommodate this new possibility. First, a

strategy SC for C selects an element of C’s choice set DC after the history (DA, DB) ∈ D2.

Since C can now choose to accept both contracts if she wishes, the choice set DC is given

by:

DC = {(DA, DB), (DA, D0), (D0, DB), (D0, D0)}.

This induces the game Γ(Di, Dj) where Di (i = A, 0) is the contract between A and C

and Dj (j = B, 0) is the contract between B and C. Therefore, the game Γ(Di, Dj) is one

in which A’s preferences are UDi
A and B’s preferences are U

Dj

B . This means that the stage

three strategy profile s−C = (sA, sB) is defined on D2 so that si : (D)2 7→ ∆i (i = A,B).

In other words, players select a strategy for every possible post-contract subgame of the

form Γ(Di, Dj).

We refer to the stage three game that is played in equilibrium of ΓC as the equilibrium

game. If C accepts only DA, then the equilibrium game is Γ(DA). If C accepts DA and

DB, then the equilibrium game is Γ(DA, DB) and so on. The game Γ(DA, DB) was not

possible when C could only accept a single contract. However, when C can accept both

contracts it is possible.

This raises the issue of determining how A chooses DA given that B is choosing DB.

Given a function s−C = (sA, sB), B’s contract DB and C’s decision SC , A chooses a

contract in order to maximize his payoff.

max
DA

sA(SC(DA, DB))T UDA
A sB(SC(DA, DB)) (4)

This gives rise to a best response correspondence for A.

Definition 4. Player A’s best contract response correspondence given s−C is a set valued

function ΦA(T |s−C) : D 7→ 2D that gives all of the contracts DA that maximize 4 when

B makes contract DB given s−C .

By requiring that s−C selects a NE of every post-contract subgame, we guarantee that

sA(SC(DA, DB)) is a best response to sA(SC(DA, DB)) and vice versa. When s−C meets

this requirement, the best contract response correspondence amounts to a best response

correspondence for the extensive form game. The following result uses the concept of a

best contract response correspondence to categorize a monopolist game miner’s payoffs

when able to accept both contracts.
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Theorem 6. The monopolist game miner’s equilibrium payoffs under the restriction that

C can only accept one contract are always as good and sometimes better than her payoffs

without that restriction.

Proof. Suppose δA(D̂A) ≥ 0 and/or δB(D̂B) ≥ 0 and δA(D̂A, D̂B) ≥ δB(D̂B, D̂A) ≥ 0,

then with the restriction, C gets δB(D̂B, D̂A). However, without the restriction, there is

the possibility that for some DA and DB, A and B both prefer Γ(DA, DB) to Γ(D̂A) and

Γ(D̂B). If DA ∈ ΦA(DB) and DB ∈ ΦB(DA) given s−C , then this will be an equilibrium.

When the equilibrium game is Γ(DA, DB), neither player is paying for exclusivity, so C’s

payoff is zero instead of δB(DB, DA).

Further, the threat of an outcome Γ(DA, DB) can never induce i to pay more than

δj(D̂j, D̂i) for exclusivity. This is because δj(D̂j, D̂i) is the value for j of going from

Γ(D̂A) to Γ(D̂B). Given that i pays for exclusivity, there is no payment that j can

make to change the game from Γ(D̂A) to Γ(DA, DB) because i’s contract is contingent

on exclusivity.

Theorem 6 says that a monopolist game miner cannot be made worse off by restricting

herself to accept a single contract. The reason is that when C does not restrict herself,

then she does not give up DA in order to accept DB. Therefore, if C accepts DB, then

her best response is to accept any contract DA for which her payoff under Γ(DA, DB) is

at least her payoff under Γ(DB). Knowing this, A will choose DA such that C’s payoff

under Γ(DA, DB) is exactly what it is under Γ(DB). The same holds for B. Therefore,

C is made worse-off by the ability to make contracts with both players. Put differently,

the threat of an equilibrium game Γ(DA, DB) never induces the players to pay more, and

it is sometimes better for the players.

The above suggests that the one-contract restriction might be the result of pay-

off maximizing behavior. That is, C’s payoff in equilibrium of the one-contract game

might be equivalent to a payment not to contract with the other player. Hence, the

restricted game is equivalent to a game in which A and B submit two-element stage-

one offers, (Di, zi), where Di is the matrix of strategy-contingent transfers and zi is a

payment not to make a contract with j. If zi = 0, then i places no exclusivity re-

striction on C’s acceptance of Di. Therefore, C’s payoff from accepting A’s contract is

zA + sA(DA, D0)
T DAsB(DA, D0). If zA = zB = 0 then C’s payoff from accepting both

contracts is sA(DA, DB)T (DA + DB)sB(DA, DB).
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4.3 Sequential Contracts

We now examine the role of timing on game mining outcomes. The game is exactly as

previously described, except that A first selects a contract to be observed by B before B

selects a contract. In this setting we find that A may have a first-mover advantage and

also that contracts are not equivalent to the pre-commitments of Renou (2009). Both

points are demonstrated in the following example.

Example 5. Consider the game Γ where A is the row player. The unique NE of this

x y z
x 2,5 0,0 5,4
y 1,3 1,2 2,0
z 0,3 0,1 2,0

game is (x, x). Note that x is a strictly dominant strategy for B. By theorem 3, there

is no contract DA such that A gets a better payoff in a NE of Γ(DA) than in a NE of

Γ. Despite this fact, there is a contract DA such that sA(DA, DB)T UDA
A sB(DA, DB) >

sA(D0)
T UAsB(D0) where DB ∈ ΦB(DA). In other words, there is a contract DA such that

when B chooses his best contract response to DA, A gets a higher payoff in Γ(DA, ΦB(DA))

than in any NE of Γ. For example, if A signs a contract with C to pay C 2 whenever the

outcome is (x, x), then the unique NE of Γ(DA) is (y, x). The resultant game, Γ(DA) is

given by:

x y z
x 0,5 0,0 5,4
y 1,3 1,2 2,0
z 0,3 0,1 2,0

Then B’s best response is a contract DB that promises to pay C 4 if the outcome is

(y, x) and 3 if the outcome is (y, y). This will make (x, z) the unique NE of Γ(DA, DB).

x y z
x 0,5 0,0 5,4
y 1,-1 1,-1 2,0
z 0,3 0,1 2,0

The final outcome is best for A. Note that if B was the first to select a contract, then

B would choose D0 to which A’s best response is D0.
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This example draws a sharp distinction between game mining and pre-commitments

to play or not play certain strategies. Suppose A instead selected a contract that made x

a never-best-response. Then B’s best response is D0, and the outcome is (y, x), which is

worse for A. A does not want to commit to not playing x because (x, z) is the ultimate

goal. He rather wants to commit to (x, x) not being the outcome, so that B will commit

to (y, x) and (y, y) not being the outcome 3

Exploiting contract timing is yet another way that game miners game miners can

extract profits from players even when players are making the offers. Since A has a

first-mover advantage, and B has a second-mover disadvantage, both are willing to pay

to move first. Suppose A recognizes this advantage before B and approaches C with his

desired contract DA. C could potentially put A on hold and notify B to start a bidding

war over the first-mover advantage. The first-mover advantage is worth more to A than

it is to B, five versus one, so A would end up paying B’s maximum willingness to pay.

This is despite the fact that players are offering the contracts and C is free to accept

both.

4.4 C Makes Offers

Until this point we have assumed a particular bargaining structure in which A and B

make take-it-or-leave-it offers to C. This implies that C’s only bargaining power is in

rejecting contracts that result in negative payoffs. Suppose now that we change the game

so that C makes publicly observable offers to A and B, and then A and B simultaneously

accept or reject the offers C has made. So A and B will now accept any contract that

does not make them worse off, given the other’s choice. This clearly places more power

in the hands of C.

To accommodate the new structure of the game, we alter the definition of strategies.

Now C’s stage one strategy is sC ∈ D2. A and B have binary stage two strategies

s2
i : D2 7→ {accept, reject} and stage-three strategies s3

i : D2 7→ ∆i (i = A,B), which we

sometimes shorten to be s2
−C and s3

−C . So C selects a contract for each player, sC . Then

each player chooses to accept or reject the contract they are offered, s2
i for i = A,B.

Then, the players play the resultant game, s3
i for i = A,B.

We want to characterize C’s payoffs in an SPE. To do so, consider the following devious

plan where C can sometimes create a high-order Prisoner’s Dilemma (PD) between A

and B. This is illustrated in the example below.
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Example 6. Consider the game Γ where A is the row player.

w x y z
w 4,4 0,0 0,0 0,5
x 0,0 1,2 0,0 0,0
y 0,0 0,0 2,1 0,0
z 5,0 0,0 0,0 3,3

The NE of Γ is (z, z) at which both players get a payoff of 3. C’s plan is the following:

choose DA and DB so that both players have a strictly dominant strategy to accept, given

s3
−C (in this example the caveat “given s3

−C” won’t come into play because we make sure

that Γ, Γ(DA), Γ(DB), and Γ(DA, DB) all have unique NE) Suppose C sets DA so that

Γ(DA) is:

w x y z
w 1.01,4 1,0 1,0 0,5
x 0,0 0,2 0,0 .5,0
y 0,0 0,0 5,1 0,0
z 0,0 0,0 0,0 0,3

The NE of Γ(DA) is (y, y) where payoffs are (5, 1). So when DB = D0 (i.e. B rejects

the contract offered to him), A has the incentive to accept DA because A’s payoff will

increase from 3 under Γ to 5 under Γ(DA). Note that A’s payoff for (y, y) in Γ was only

2, so this means that DA stipulates that C pays A when (y, y) occurs. Then C sets DB

so that Γ(DB) is:

w x y z
w 4,1.01 0,0 0,0 0,0
x 0,1 1,5 0,0 0,0
y 0,1 0,0 2,0 0,0
z 5,0 0,0 0,.5 3,0

The NE of Γ(DB) is (x, x) where payoffs are (1, 5). So B has the incentive to accept

DB given that DA = D0 (i.e. A rejects the contract offered to him) because B’s payoff

will increase from 3 to 5. Note that B’s payoff for (x, x) in Γ was only 2, so this means

that DB stipulates that C pays B when (x, x) occurs.

If both of the players accept their respective contracgts, we get Γ(DA, DB):

The NE of Γ(DA, DB) is (w, w) where payoffs are (1.01, 1.01). So A has the incentive

to accept DA given that B accepts because A’s payoff will increase from 1 under Γ(DB) to
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w x y z
w 1.01,1.01 1,0 1,0 0,0
x 0,1 0,5 0,0 .5,0
y 0,1 0,0 5,0 0,0
z 5,0 0,0 0,.5 0,0

1.01 under Γ(DA, DB). Similarly B has the incentive to accept DB given that A accepts

because B’s payoff will increase from 1 under Γ(DA) to 1.01 under Γ(DA, DB)2.

This is very similar to a PD game because both players have a strictly dominant

strategy to accept the contract that C offers. This moves them from a situation where

the only NE gives them (3, 3) to a situation where the only NE gives them (1.01, 1.01).

By playing A against B the game miner C gets 2(4− 1.01) = 5.98 in the unique SPE of

ΓC . The situation can be visualized alternatively as the following PD game where A is

the row player and B is the column player:

accept reject

accept 1.01, 1.01 5, 1

reject 1, 5 3, 3

3

The example above shows that C can potentially do better for herself by selecting

contracts that both A and B will accept than by contracting with one player exclusively.

The intuition for why this is possible is that C relies on the fact that Γ(DA) and Γ(DB)

will never obtain in equilibrium. Therefore, C is free to offer contracts DA and DB such

that she loses money in the NE of Γ(DA) and Γ(DB). This allows her the flexibility to

make sure the NE of Γ(DA, DB) is in her favor. Note that this is true even in many games

where players have strictly dominant strategies in Γ as well as constant-sum games. The

following example depicts a game where both players have dominant strategies.

Example 7. Consider the game Γ where A is the row player and both players have a

2Note that the NE of Γ(DA, DB), (w, w), is not in RΓ
i (σj) for any σj ∈ ∆j for i = A,B, j = A,B

and j 6= i
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strictly dominant strategy to choose z.

x y z

x 5, 5 1, 5 1, 6

y 5, 1 1, 1 2, 2

z 6, 1 2, 2 3, 3

.

The NE is (z, z), and both players get a payoff of 3. Then if C offers the following contract

to A

DA =




2.99 −2 0

3 0 −3

4 0 0




the NE of Γ(DA) is (y, z). A’s payoff in Γ(DA) is 2 − (−3) = 5, so A would accept DA,

getting 5 rather than 3. B’s payoff in Γ(DA) is 2. If C offers DB = DT
A to B, then the

equilibrium of Γ(DA, DB) is (x, x). The payoff to B is 5 − 2.99 = 2.01. Therefore, B

would accept DB given that A accepts DA because he will get 2.01 rather than 2. By

the symmetry of Γ, DA and DB, we know that each player i has a dominant strategy to

accept Di regardless of whether j 6= i accepts or rejects his offered contract 3

The following theorem provides an upper bound on the game miner’s payoff when she

extracts profits according to this scheme.

Theorem 7. The maximum that a monopolist game miner can profit by offering contracts

(DA, DB) such that A and B have weakly dominant strategies to accept is

max
xA,xB

xT
A(UA + UB)xB − min

x′A,x′B
{x′TA UBx′B : x′B ∈ RΓ

B(x′A)}− min
x′′A,x′′B

{x′′TA UBx′′B : x′′A ∈ RΓ
A(x′′B)}

Proof. The first term is the maximum amount that A and B can earn in any outcome

of Γ. The second term is the minimum amount that C can force B to get by designing

DA such that x′A is a best response to x′B. This is because C is constrained so that x′B
must lie on B’s best response correspondence for Γ. The third term is the equivalent of

the second term for A rather than B.
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Suppose C earns more than this maximum, then

sA(DA, DB)T (DA + DB)sB(DA, DB) > max
xA,xB

xT
A(UA + UB)xB... (5)

− min
x′A,x′B

{x′TA UBx′B : x′B ∈ RΓ
B(x′A)} − min

x′′A,x′′B
{x′′TA UBx′′B : x′′A ∈ RΓ

A(x′′B)}

but because A and B each have a weakly dominant strategy to accept, we know that

sA(DA, DB)T (UA −DA)sB(DA, DB) ≥ sA(D0, DB)T UAsB(D0, DB)

and

sA(DA, DB)T (UB −DB)sB(DA, DB) ≥ sA(DA, D0)
T UBsB(DA, D0).

We can rewrite these as

sA(DA, DB)T UAsB(DA, DB)−sA(D0, DB)T UAsB(D0, DB) ≥ sA(DA, DB)T DAsB(DA, DB)

and

sA(DA, DB)T UBsB(DA, DB)−sA(DA, D0)
T UBsB(DA, D0) ≥ sA(DA, DB)T DBsB(DA, DB)

which imply that

sA(DA, DB)T (DA + DB)sB(DA, DB) ≤ sA(DA, DB)T (UA + UB)sB(DA, DB)...

−sA(D0, DB)T UAsB(D0, DB)− sA(DA, D0)
T UBsB(DA, D0)

The left-hand-side is C’s profit, and the maximum of the right-hand-side is given by the

right-hand-side of inequality 5. Therefore, we have a contradiction.

This result is important because it says that the game miner cannot make an arbitrary

profit from the players by giving each a dominant strategy to accept her offer. Therefore,

the monopolist can always do only limited damage.

5 Multiple Miners

Since a monopolist game miner can extract profits from the interaction between A and

B, it is reasonable to think that other game miners will enter this market. In addition,
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the opportunity to sign game mining contracts can benefit players. So if one player finds

a game miner to contract with, then the other player is likely to seek out his own game

miner. For these reasons, we introduce multiple game miners to examine the role of

competition on outcomes. We call this extensive game ΓN .

5.1 Perfect Competition

We begin with the assumption that there are a very large number of game miners available

for contracting. This assumption means that i will never pay a game miner not to contract

with j, because j can readily find another external party to contract with if a contract

is desirable. In this section we also adhere to the assumption that players make contract

offers to game miners, and that these contracts are made simultaneously.

Naturally, in this competitive environment, game miners will earn the marginal cost

of their service, which is assumed to be zero. Therefore, we worry primarily about

characterizing the equilibrium game Γ(DA, DB) (i.e. the post-contract subgame that is

played in equilibrium). To do so, we first consider the problem that A faces when choosing

a contract DA given that B chooses DB. It is similar to the problem from equation 4.

max
DA

sA(DA, DB)T UDA
A sB(DA, DB) (6)

s.t. sA(DA, DB)T DAsB(DA, DB) ≥ 0

B has an analogous problem. So A and B are simultaneously choosing payoffs UDA
A

and UDB
B , and each pair of utilities is mapped to strategies by s−C .

Before our next result, we introduce some notation. Let Mi(Di|Dj) be the aggregate

payoff set for i given that j’s contract is Dj. Let M∗
i (Di|Dj) be the maximum element of

Mi(Di|Dj). And let Mi(Dj) = maxDi
{M∗

i (Di|Dj)} be the maximum of all the aggregate

payoff sets for all contracts Di ∈ D given Dj.

Theorem 8. If Γ′ is an equilibrium game of ΓN for all s−C, then i gets Mi(Dj) in all

NE of Γ′.

Proof. We can add a conditional argument to i’s aggregate payoff function to indicate
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that j’s contract is given. The equilibrium payoffs Γ(DA, DB) are then characterized by

mA(DA|DB, s−C) = mA(D̂A|DB, s−C)

mB(DB|DA, s−C) = mB(D̂B|DA, s−C)

Otherwise mi(Di|Dj, s−C) < Mi(Dj), and for some s′−C 6= s−C , there is an alternative

D′
i such that mi(D

′
i|Dj, s

′
−C) = Mi(Dj).

One example of a game Γ′ that is an equilibrium game for all s−C is one in which

players have strictly dominant strategies. Theorem 3 says that if B has a strictly dominant

strategy, then A cannot benefit from a game mining contract without hurting the game

miner. So if UDA
A and UDB

B both exhibit a strictly dominant strategy, then neither player

will have the opportunity to make a beneficial contract with an outside party. In other

words, such a DA and DB would be an equilibrium game Γ(DA, DB) because neither

player will want to deviate. Of course not all games with strictly dominant strategies

are equilibrium games. It must be that DA does not require A to pay the game miner

when choosing his best response to B’s strictly dominant strategy under DB (likewise for

DB). In other words, if (xA, xB) is the NE under Γ(DA, DB) where UDA
A and UDB

B exhibit

strictly dominant strategies, then we must have that xT
ADAxB = 0. Otherwise, A could

do better against DB by choosing a contract where xT
ADAxB = 0 holds.

However, if UA and UB in Γ both exhibit strictly dominant strategies it still is entirely

possible to have an equilibrium game Γ(DA, DB) where players sign something other than

the null contract (i.e. DA 6= D0 6= DB). That is, if B selects DB so that UDB
B does not

exhibit a strictly dominant strategy, then A might have a best response DA ∈ ΦA(DB|s−C)

so that UDA
A does not exhibit a strictly dominant strategy (or exhibits a different strictly

dominant strategy). If DB ∈ ΦB(DA|s−C), then we have an equilibrium game Γ(DA, DB)

that is different from Γ. This is despite the fact that both UA and UB exhibit strictly

dominant strategies.

Another important issue that arises is whether A and B must be allowed to randomly

select contracts to offer their respective game miners in order to guarantee the existence

of an equilibrium.

Definition 5. A mixed contract for player i is a mapping ΣA : D 7→ [0, 1] such that∫
D Σi(Di)dDi = 1.

In an SPE where players’ strategies employ (proper) mixed contracts, each player will
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be indifferent among the contracts that he plays with positive probability given the other

player’s mixed contract strategy and s−C . In particular, if A is randomizing between

contracts DA and D′
A and B’s mixed contract is ΣB, then

∫

D
ΣB(DB)

[
sA(DA, DB)T UDA

A sB(DA, DB)
]
dDB = ...

∫

D
ΣB(DB)

[
sA(D′

A, DB)T U
D′A
A sB(D′

A, DB)
]
dDB

Using this description of mixed contract equilibria, we explore the existence of SPE of

ΓN .

Theorem 9. There exist games ΓN and functions s−C = (sA, sB), such that s−C is part

of an SPE if and only if A and B use mixed contracts.

Proof. Let Φ = (ΦA, ΦB). By Kakutani’s fixed point theorem, we know that if D2 non-

empty, compact and convex, and Φ : D2 7→ 2D
2
is a set valued function onD2 with a closed

graph and the property that Φ(DA, DB) is nonempty and convex for all (DA, DB) ∈ D2,

then Φ has a fixed point. However, if Φ only includes pure best responses, then we

lose convexity, i.e. for distinct DA and D′
A ∈ ΦI(DB), we don’t generally have that

D′′
A = αDA + (1− α)D′

A ∈ ΦI(DB). This is true because sA(DA, DB)T DAsB(DA, DB) =

0 and sA(D′
A, DB)T D′

AsB(D′
A, dB) = 0 implies sA(D′′

A, DB)T D′′
AsB(D′′

A, dB) = 0 only if

si(DA, DB) = si(D
′
A, DB) = si(D

′′
A, DA), which does not generally hold.

The fact that s−C must be a NE of Γ(DA, DB) restricts the set of fixed points (DA, DB)

rather than restricting the set of correspondences Φ for ΓN . Further, there are no restric-

tions on UA or UB. Therefore, for every DA and DB, we can find matrices UA and UB such

that DA ∈ ΦA(DB). Hence, we invoke Kakutani’s theorem to say that the convexity of Φ

is necessary for the general existence of fixed points of Φ(T |s−C). Hence mixed strategies

are necessary for fixed points of Φ(T |s−C), for some ΓN and s−C .

When A and B use mixed contracts, each has uncertainty about which game Γ(DA, DB)

will ultimately be played. This is reminiscent of what occurs in a Bayesian Nash equi-

librium. Yet there is an important difference. The difference is that A and B’s realized

contracts are announced publicly after the game miners accept them in stage two. So

when they play Γ(DA, DB), they both know which game they are playing. Hence, there

is uncertainty about contracts, but only in stage one when they are selecting contracts,

not when they are playing the post-contract subgame in stage three. So game mining
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introduces the possibility for a new kind of uncertainty about other players’ payoffs. This

uncertainty affects how one chooses one’s own payoffs but not how one plays the game

once payoffs are chosen.

5.2 Duopoly

We now alter the assumption that there are many game miners. Instead suppose that

there are only two. This makes it possible for i to pay for exclusive contracts with both

game miners in order to keep j from obtaining a contract of his own. Like before, we

assume players A and B make simultaneous take-it-or-leave-it contract offers. However,

this time they are making offers to game miners C and E. Each player makes one contract

offer to each of the game miners, i.e. Di = (DC
i , DE

i ) ∈ D2 (i = A,B). Each game miner

cannot accept more than one contract offer.

Here, because there are only two game miners it might be reasonable for one player

to pay for exclusivity with both game miners. In other words, even though A only cares

about DA = DC
A +DE

A , or his “aggregate contract,” he may be willing to split the contract

between C and E so that C and E both prefer A’s offered contract over any contract B

is willing to offer. Whether or not A is willing to pay each duopolist enough to exclude

B will depend on A’s relative gains to exclusivity versus A’s outcome when he does not

exclude B. We will use the construction, i blocks j from Γ′, to refer to a situation in

which i pays for exclusivity in a way that prevents j from getting a contract that brings

about Γ′.

We examine this blocking behavior below for each possible equilibrium game Γ, Γ(Di)

for i = A,B and Γ(DA, DB). First assume the following notation:

δA((ΦA, DB), DB|s−C) = ΦA(DB|s−C)−mA(DB|s−C).

So δA((ΦA, DB), DB|s−C) is the amount that A will pay in order to change the game from

Γ(DB) to Γ(ΦA(DB), DB). Like before, we omit the conditional argument s−C to simplify

the notation.

Given that the equilibrium game is Γ, there are two possibilities

1. neither player blocks the other

2. i blocks j from Γ(Dj)

33



The first situation results in duopolist payoffs of (0, 0) because neither player is paying

for an exclusive contract. This might occur if there is no opportunity for game min-

ing (i.e. D̂i = D0 for i = A, B). The second situation results in duopolist payoffs of

(δj(D̂j), δj(D̂j)). That is, i pays each duopolist a quantity that just exceeds j’s willing-

ness to pay to change the game from Γ to Γ(D̂j). This might occur if i prefers Γ to Γ(D̂j)

at least twice as much as j prefers Γ(D̂j) to Γ.

Given that the equilibrium game is Γ(Di), there are three possibilities

1. neither player blocks the other

2. i blocks j from Γ(D̂j)

3. i blocks j from Γ(Dk
A, Dm

B ) for k,m ∈ {C,E}, k 6= m.

The first situation again results in duopolist payoffs of (0, 0). The second situation results

in duopolist payoffs of (αδj(D̂j), (1−α)δj(D̂j)) where α ∈ [0, 1]. The reason is that j will

have to get exclusive contracts with both game miners if he is to induce Γ(D̂j). Therefore,

if i wants to block j, i needs the sum of his payments to C and E to be greater than

j’s willingness to pay to change the game from Γ(Di) to Γ(D̂j). The third situation is

a bit more complicated. It is a setting where i has contracted for exclusivity with both

game miners, offering contracts DC
i and DE

i . If j was to pay one of the game miners, say

E, more than i offered E, then the resultant game would be Γ(DC
i , DE

j ). If i is to block

j from doing this, then player i has to offer E at least δB((DC
i , φj), Di). This quantity

is j’s willingness to pay in order to change the game from Γ(Di) to Γ(DC
i , φj(D

C
i )).

Naturally, i must pay C the quantity δB((DE
i , φj), Di) to block j from changing the game

to Γ(DE
i , φj(D

E
i )).

Finally we explore what happens when the equilibrium game is Γ(DA, DB). Here

there are two possibilities

1. neither player blocks the other

2. i blocks j from Γ(D̂j)

3. i blocks j from Γ(D̂j) and j blocks i from Γ(D̂i).

The first situation again results in duopolist payoffs of (0, 0). The second situation results

in duopolist payoffs of (δj(D̂j), 0). Here i pays C the amount of j’s willingness to pay,

δj(D̂j), in order to keep j from getting an exclusive contract with C. However, j pays
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nothing to block i from getting an exclusive contract with E. This might be because

j prefers Γ(D̂j) to Γ(DA, DB) while i prefers Γ(DA, DB) to Γ(D̂i). The third situation

is an extension of the second. Here both players are blocking the other from getting

an exclusive contract. Player i will make offers to both C and E. These offers will be

such that, given j’s offers, C accepts and E rejects. E instead accepts j’s offer. Player

i pays C enough in Γ(DA, DB) so that it is not worthwhile for j to offer C a greater

amount, causing C to accept and inducing the game Γ(D̂j). The amount that j pays E

in Γ(DA, DB) is enough so that it is not worthwhile for i to offer E a greater amount,

causing E to accept and inducing the game Γ(D̂i).

Of course there are many more SPE of the game mining duopoly than are characterized

by the above blocking behavior. In fact, many of the SPE can involve combinations of

the above blocking behavior, where A and B are both blocking each other from various

games. Other SPE may rely on the type of “unreasonable” behavior discussed at the

end of section 4.1. For example, i offers contracts that pay more than i’s maximum

willingness to pay, only because j is willing to offer yet more.

6 Discussion

As mentioned in the introduction, the game mining analysis opens up several new research

areas. One natural extension is to consider game mining situations in which there are

more than two players. With multiple players simultaneously choosing contracts, the

blocking and exclusivity concerns we address above are likely to become much more

complicated. An open question is whether the game miner has more or less opportunity

to profit as the number of players grows.

Another research area concerns the difficulty of modeling the game miner’s uncertainty

over which outcome will obtain in the game Γ(DA) after signing the contract DA with

player A. In an SPE analysis, the game miner’s decision to sign or not sign DA occurs

through the process of backward induction. That is, the SPE approach assumes the game

miner somehow knows the outcome of Γ(DA), s−C(DA), before she signs the contract with

A. In the real world, the game miner would likely not be so certain about future events.

In fact, the game miner’s beliefs would likely assign nonzero probability to the occurrence

of non-equilibrium outcomes of Γ(DA). Hence, rather than an equilibrium-approach, it

may be valuable to adopt a statistical approach to game mining, such as the Predictive
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Game Theory (PGT) models described in Wolpert (2008).

Yet another research question is whether replacing the structured bargaining between

players and game miners with unstructured bargaining will change the profitability of

game mining. One might also consider the reverse a situation in which the stage game

Γ is a game of unstructured bargaining between A and B, but the negotiations between

players and game miners follow structured bargaining. Here, we would have that players

sign contracts through structured bargaining in an attempt to gain an advantage in the

unstructured bargaining that follows. The question is how would players design contracts

to distort their utility possibilities set in such a way that benefits them in the ensuing

unstructured bargaining. An interesting technical issue arises in deciding whether to

allow players to sign contracts that lead to utility possibility sets that are nonconvex. If

so, then a solution concept other than the Nash Bargaining Solution is needed [see Nash

(1950); Kalai and Smorodinsky (1975)].

The following phenomenon, which is closely related to game mining, also deserves a

rigorous analysis. That is, player A may want to form a contract with the game miner,

C, to pay player B an outcome-contingent amount. This is much like the setup of JW,

where players make outcome-contingent side-payments to each other.

However, there are some situations in which a contract between A and C to pay B

outcome-contingent amounts can actually hurt B. In such instances, C will be faced

with this peculiar question from B: “How much do I have to pay you never to give me

money?” Here A benefits from an obligation to pay B, while B would be hurt by such

a payment. Hence, unlike JW, where the question is whether side-payments can bring

about the efficient outcome, we ask if this is an opportunity for the game miner to profit.

That is, can the game miner leverage A’s desire to have the contract against B’s desire

not to have the contract in order to extract profit?

To gain intuition for why such a strange arrangement might be beneficial for A and

detrimental for B, consider the following two-stage game of complete and perfect infor-

mation. A, as the row player, moves first, and then B moves (i.e., a Stackelberg game).

The payoff bimatrix is

l r

t −1, 1 10, 0

b 0, 3 0, 3

(7)

If A were to move T(op), then B would move L(eft), and A would get −1. If instead A
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were to move D(own), then A would get 0. So A moves D, gets 0, and B gets 3.

If instead the bimatrix were

l r

t −1, 1 10, 2

b 0, 3 0, 3

(8)

then if A were to move T, B would move R(ight), and A would get 10. So now the

equilibrium is (T, R), with A getting 10.

So if we start with the bimatrix 7, but A can get the game miner, C, to pay B an

outcome-contingent amount given by a contract DB,

l r

t 0, 0 0, 2

b 0, 0 0, 0

then we wind up with the bimatrix 8, where A benefits by 10 − 0 = 10, and B loses by

2− 3 = −1.

So for example, if C is a bank to which B owes a lot of money, and A can pay the

bank so that B’s debt is reduced by DB, it benefits A. As an example, a payment to C

of 3 would work.

As an example, say that B owes a loan shark a lot of money, and this loan shark

would have no qualms about who pays him in B’s name. Then the miner can pay off

(output-contingent amounts of) B’s debt. More generally, even if we simply had Game

Mining Inc. send a bar of gold to B, wouldn’t it be the case that B cannot pretend that

he will throw the gold away? After all, that would be a non-credible threat; the original

game is over, and B gets a bar of gold in the mail, so he cannot credibly claim that

he would throw it away. Even if B could somehow protect himself pro-actively against

gold delivered by the Post Office, Game Mining Inc. could simply commit to sending

something to B, at some unspecified time within the next year, with the needed value.

Naturally, whenever B is hurt by such a contract between A and C, B might want

to form a contract with another external party, saying “if I get a gift from Game Mining

Inc., you take the exact same amount from my bank account.” But this is exactly the idea

behind our arguments above. The “external party” that B uses can potentially demand

a profit for their services.
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All of this raises a crucial question: Why aren’t real game mining firms wreaking

havoc on real markets? Game mining appears to be very possible according to basic

game theory, so if it is not generally possible in the real world, what assumptions are

being violated?

There are many potential answers to this question. One tempting explanation is that

the payoff structure of most real world games makes them unable to be mined. This

seems a strange assertion because, as shown, even games in which both players have

strictly dominant strategies can be mined for profit depending on the market structure.

Other potential answers are that the calculations are too difficult in practice, that the

time frame in real world games is too short, that game mining could be considered illegal,

that imperfect information limits game mining opportunity, or that some kind of strategic

uncertainty makes game mining impractical. These explanations should be explored in

future work because they might shed light on the way game theory applies to real world

strategic settings.

There are other questions to explore. For instance, does game mining imply that

certain games should never exist because the minute they appear they will be mined into

an alternate game? In some sense this gives rise to a meta-game whereby a player that

finds himself involved in an easily mineable game might assume that the game will be

mined and therefore conclude that he is actually playing a different game. Or, in a game

with multiple equilibria, one equilibrium might make the game susceptible to mining

by an outside party that ultimately makes both parties worse off (like what happens

when a monopolist makes offers that give players strictly dominant strategies to accept).

Therefore, that susceptible equilibrium might become less likely than an equilibrium that

is more robust. In this way game mining introduces an equilibrium refinement: choose

the equilibrium that makes game mining least profitable.

These questions and others are not only interesting for their ability to shed light

on game mining concepts, but also more generally for their ability to shed light on the

noncooperative theory.
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