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On the micro mechanics of one-dimensional normal compression

G. R. McDOWELL� and J. P. DE BONO�

Discrete-element modelling has been used to investigate the micro mechanics of one-dimensional
compression. One-dimensional compression is modelled in three dimensions using an oedometer and a
large number of particles, and without the use of agglomerates. The fracture of a particle is governed
by the octahedral shear stress within the particle due to the multiple contacts and a Weibull
distribution of strengths. Different fracture mechanisms are considered, and the influence of the
distribution of fragments produced for each fracture on the global particle size distribution and the
slope of the normal compression line is investigated. Using the discrete-element method, compression
is related to the evolution of a fractal distribution of particles. The compression index is found to be
solely a function of the strengths of the particles as a function of size.
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INTRODUCTION
McDowell & Bolton (1998) related the normal compression
of granular materials to the evolution of a fractal distribution
of particle sizes using a work equation and the assumption of
a Weibull distribution of particle strengths giving a particle
size effect on strength. They did not consider the stresses
induced within a particle by multiple contacts, and simply
considered the strength of a particle as measured by crushing
between flat platens. Their work proposed that normal com-
pression lines should be linear on a plot of voids ratio e
against the logarithm of applied stress �. There has been
much theoretical work since: for example, Russell et al.
(2009), who did consider the internal stress field within
particles with regard to crushing; and Russell (2011), who
also linked the compression line to the evolving fractal
particle size distribution.

Crushing has generally been modelled using the discrete-
element method (DEM) via two alternative methods: replac-
ing ‘breaking’ grains with new, smaller fragments; or by
using agglomerates – groups of bonded particles with finite
bond strengths. Åström & Herrmann (1998) showed that it
was possible to model the fragmentation of grains in two
dimensions using DEM. This work was supplemented by
Tsoungui et al. (1999). Lobo-Guerrero & Vallejo (2005)
developed a similar two-dimensional model of granular
crushing, but in that model mass was not conserved. Ben-
Nun & Einav (2010) and Ben-Nun et al. (2010) used their
own two-dimensional model of grain fracture to explore the
particle and force-chain topology, and the evolution of
fractal distributions, and also used a distribution of particle
strengths.

Using agglomerates, McDowell & Harireche (2002) used
DEM to show that, for normal compression, yielding was
the onset of bond breakage for an aggregate of agglomer-
ates, and that normal compression lines resulted from the
one-dimensional compression of an aggregate of agglomer-
ates. However, their aggregates contained only a small num-
ber of agglomerates. The bonds within the agglomerates
were such as to give a Weibull distribution of particle

strengths when crushed between flat platens. They did not
consider the evolution of a particle size distribution during
normal compression, owing to the insufficient number of
agglomerates in the model. Similar work was achieved by
Cheng et al. (2003) and Bolton et al. (2008), who investi-
gated various stress paths in addition to isotropic compres-
sion, although again a limited number of agglomerates were
used.

McDowell (2005) showed analytically that, based on the
kinematics of particle fracture and the void collapse caused
by the fracture of a particle, normal compression lines
according to this argument should be linear in log e–log �
space. No consideration was given to the complex distribu-
tion of loads on each particle at its multiple contacts.

This paper aims to take the next step in understanding the
mechanics of normal compression, by allowing particles to
fracture without the use of agglomerates, and by considering
the stresses induced in a particle due to the multiple contacts.
Using DEM, the normal compression is linked to the evolu-
tion of a fractal distribution of particles, and the influence of
the mechanics of fracture on the slope of the normal com-
pression line is properly investigated. This paper is essentially
the sequel to the McDowell & Bolton (1998) paper, and the
micro mechanics of normal compression are revealed.

PARTICLE STRENGTHS
McDowell & Bolton (1998) assumed that for a particle of

diameter d compressed diametrically between flat platens by a
force F, the characteristic stress induced within the particle was

�
F

d2
(1)

after Jaeger (1967), and that the values of this stress at
failure followed a Weibull distribution (Weibull, 1951). The
two-dimensional models mentioned earlier (e.g. Tsoungui et
al., 1999; Ben-Nun & Einav, 2010) generally used fracture
criteria based on shear stress derived from the principal
stresses, which took into account the various possible combi-
nations of loads on a particle. In the work on particle
strength using agglomerates by McDowell (e.g. Lim et al.,
2004), although agglomerates could break under complex
distributions of loads, no consideration was given to the
stress induced by multiple contacts, other than for simple
diametral loading.
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The discrete element method (Cundall & Strack, 1979)
uses two entities – a ball and a wall – to model interactions,
and Newton’s second law together with a contact law to
establish the accelerations, velocities and displacements of
particles via a time-stepping scheme. The most commonly
used DEM software is PFC3D (Itasca, 2005), which is the
one used by the authors. In deciding whether a particle in an
aggregate under multiple contacts should fracture or not, it
is possible to make use of the stress tensor function within
PFC3D, which will return the stress tensor for a sphere
(similar to methods employed by Tsoungui et al., 1999, and
Ben-Nun & Einav, 2010, using discs). For a particle under
multiple contacts, it would not be feasible to use the mean
stress to establish whether a particle should break or not,
because the particle, if under a high hydrostatic stress but
low deviatoric stress, would be unlikely to break, as it is
loaded uniformly over its surface.

A decision was therefore taken to use the octahedral shear
stress induced within each sphere to determine whether
fracture should occur or not. The octahedral stress in a
particle is derived from the principal stresses, and is given by

q ¼ 1
3
[(� 1 � � 2)2 þ (� 2 � � 3)2 þ (� 1 � � 3)2]

1=2
(2)

Although the use of this equation to determine whether
fracture should occur or not is a simplification, it provides a
simple criterion to facilitate breakage, taking into account
multiple contacts on a particle surface while avoiding the
use of agglomerates. The decision was taken that if a
particle is, for example, under diametral point loads, equal
in three mutually orthogonal directions, then it would not
break under this hydrostatic stress (q ¼ 0).

For PFC3D, given a sphere compressed diametrically be-
tween two walls, the value of q generated using the above
equation is equivalent to

q ¼ 0:9
F

d2
(3)

and so is proportional to the characteristic stress �. There-
fore the assumption was made that, for particles loaded
under multiple contacts, the particle would break if the
octahedral shear stress was greater than or equal to its
‘strength’, where the strengths of the particles satisfy a
Weibull distribution of q-values.

The Weibull distribution is one of the most commonly
used tools for analysing the fracture of disordered material,
and has a wide range of applications. As well as ceramics
(e.g. Ashby & Jones, 1986), Weibull statistics have been
applied to the behaviour of ice (Jellinek, 1958) and incorpo-
rated into Daniels’ fibre bundle model (Daniels, 1945). The
Weibull distribution of strengths used here was taken from
McDowell (2002) for silica sand, and is described in this
work by the Weibull modulus, m, and the 37% strength, q0:
The quantity q0 is the value of octahedral stress for a
particular particle size such that 37% of particles are
stronger, and is related to the characteristic induced tensile
stress. Size effects on the tensile strength of materials are
usually described in the form � / db, where � is strength, d
is the size, and b is a material constant. From Weibull’s
survival probability for a block of material, it is possible to
derive the relation

q0 / d�3=m (4)

assuming bulk fracture dominates and Weibull gives a
volume ‘effect’ on particle strength (McDowell & Bolton,
1998). If surface flaws dominate, a different relation (equa-
tion (5)) is appropriate, which will be discussed later (Lim
et al., 2004).

ONE-DIMENSIONAL NORMAL COMPRESSION
A dense, random sample of 620 spheres of diameter 2mm

was created in a scaled-down oedometer with diameter
30 mm and height 7.0 mm, and the sample was loaded one-
dimensionally. These dimensions mean that, initially, only
relatively short particle force chains can form between the
top and bottom platens; however, it was decided to have
such a geometry as is used in real one-dimensional oed-
ometer experiments (in this case the aspect ratio is chosen
to reduce wall friction). Using a larger oedometer would not
allow simulations to reach such high pressures, owing to a
large number of particles covering a very wide range of
scales. In addition, it is important to have a diameter large
enough to permit a sufficient number of force chains to
develop. Different strength characteristics, hardening laws
and mechanisms of fracture were examined to investigate the
influence on the resulting particle size distribution and the
slope of the normal compression line for the simulations.

The initial monodisperse sample was created using the
radii expansion technique (Itasca, 2005), resulting in a
random packing as dense as possible without any locked-in
forces or overlap. The voids ratio calculated for the com-
pression plots was calculated using the total solid volume
for convenience while the simulation was running. Retro-
spective calculations accounting for overlaps between parti-
cles demonstrated no significant difference (less than 0.5%
difference in volume of solids).

Simple diametral splitting
In a similar approach to the previous work with discs (e.g.

Åström & Herrmann, 1998; Tsoungui et al., 1999; Lobo-
Guerrero & Vallejo, 2005; Ben-Nun & Einav, 2010),
although broken spheres are not spheres, in the interest of
computational efficiency, allowing a large number of parti-
cles to be generated and fragments to be self-similar in
shape, each sphere was allowed to split into two equal
spheres, without loss of mass, when the value of q was
greater than or equal to its Weibull strength. Values of q0

derived from McDowell (2002) are plotted in Fig. 1 along
with the values of q0 used in the simulation according to the
above law in equation (4). McDowell’s compression plots
and evolving particle distributions are reproduced in Figs 2
and 3 respectively.

It has long been acknowledged that it is impossible to
simulate a perfectly realistic fracture mechanism using discs, as
typified by the various solutions adopted by others when model-
ling two-dimensional problems (e.g. Åström & Herrmann,
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Fig. 1. Strength as a function of particle size for silica sand
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1998; Lobo-Guerrero & Vallejo, 2005; Ben-Nun & Einav,
2010). The same applies to three dimensions, where a solution
needs to be as physically realistic as possible, while using only
spheres and allowing a large number of breakages.

In two dimensions, Åström & Herrmann (1998) experi-
mented with two alternative mechanisms, the first of which
replaced a broken disc with two equally sized fragments.
The second mechanism used a much larger number of
fragments, some of which were placed outside the perimeter
of the original particle. They noted that although their
second mechanism usually resulted in reduced local pressure
being induced during breakage, the two mechanisms resulted
in essentially the same final particle size distributions. Lobo-
Guerrero & Vallejo (2005) replaced broken discs with
smaller discs with no overlap, avoiding artificial pressures
but not obeying conservation of mass. Ben-Nun & Einav
(2010) proposed an alternative technique that involved re-
placing broken discs with fragments small enough to avoid
overlap, then rapidly expanding them to retain the original
mass, avoiding a sudden increase in potential energy.

In the current paper, new sphere fragments overlap enough
to be contained within the bounding parent sphere, with the
axis joining their centres aligned along the direction of the
minor principal stress, as shown in Fig. 4. This produces
undesirable local pressure spikes during a breakage; how-
ever, this overlap causes the particle fragments to move
along the direction of the minor principal stress for the
original parent particle, just as might occur for a single
particle crushed between flat platens. To ensure sample
stability, and to accommodate the artificial pressure increase
due to the imposed elastic energy before particle release,

particle breakages are updated at once (for the whole
sample) after a number of computational cycles equivalent
to 0.003 s (the actual number of cycles during this time
interval is inversely proportional to the ‘time step’). This
period was deemed sufficient to allow the artificially induced
energy to dissipate; increasing it has no effect on overall
breakage. For each stress increment (1 MPa), the platen is
gradually accelerated when increasing the vertical stress,
with the maximum velocity capped at 0.1 m/s to eliminate
any loading-rate effects. The platen is decelerated as the
target stress is approached, and once it is reached the sample
is cycled continuously until no further breakage occurs.

The particle input parameters are shown in Table 1. The
Hertzian contact model was used, and the input value of
shear modulus was arrived at assuming sand grains have an
elastic modulus of 70 GPa, a typical value for quartz. It was
found that the particle stiffness affected only the elastic
component of the compression line. That is to say, before
yield, the stiffness would affect the slope of the compression
line. The value chosen was deemed to be realistic, and as a
result the slope was shown to be small on unloading. In
reality, the elastic modulus is related to the critical fracture
stress according to Griffith (1920), and would influence the
opening of cracks. More recently, Einav (2007) applied and
extended this theory to granular material. Particle friction
has also been investigated, and has no effect on the plastic
compressibility; it affects only the lateral earth pressure
coefficient.
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Fig. 2. Normal compression lines for silica sand (McDowell, 2002)
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Table 1. Discrete-element method parameters for simulation of
silica sand

Input parameter Value

Particle diameter, d0: mm 2
Density: kg/m3 2650
Initial number of particles 620
Voids ratio 0.82
Shear modulus, G: GPa 28
Poisson’s ratio 0.25
Particle friction coefficient 0.5
Wall friction coefficient 0.0
Weibull modulus 3.3
37% Strength, q0: MPa 37.5
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The resulting normal compression line and particle size
distributions as a function of applied stress level are shown
in Figs 5 and 6 respectively. Fig. 5 also shows the unloading
curve, from which it is evident that the elastic component of
deformation during normal compression is negligible.
Images of the numerical sample before and after compres-
sion are presented in Fig. 7.

Following yield, a linear normal compression line emerges
in e–log � space (using common logarithms), with a plastic
compressibility index of approximately 0.5. Data points are
plotted at frequent intervals (1 MPa) to show that the com-
pression line has a consistent slope. Minor fluctuations are
visible, owing to the relatively small number of particles in
the simulation, especially at lower pressures, similar to
observations made by McDowell & Humphreys (2002) when
subjecting pasta shells to normal compression. When the
sample reaches a voids ratio much less than 0.5, the time
step becomes unsustainable, owing to the very wide range of
particle sizes (dmax/dmin . 1000), and the simulation is
halted. Significant crushing is still occurring at high stresses,
but it is the smaller particles with low mass that are break-

ing, which is why the rate of change of the mass-grading
curve reduces at high pressures. The general trend in Fig. 6
is the same as that in Fig. 3, although the numerical sample
is initially monodisperse, whereas the silica sand sample is
reasonably uniformly graded. As stress increases, the overall
number of contacts increases, particularly for the larger
particles, which become protected by the smaller fragments;
the smaller particles continue to break, becoming statistically
stronger.

Figure 8 shows the effects of increasing the initial
strength q0: The normal compression lines for all values of
q0 all appear to have the same gradients, with the yield
point for q0 ¼ 80 MPa occurring at the highest stress. It is
clear that the yield stress in one-dimensional compression,
for a given initial voids ratio and grading, is proportional to
the strength of individual grains, which agrees with the
proposition first made by McDowell & Bolton (1998). Just
how influential the individual grain strengths are is further
demonstrated in the graph showing the normalised stress
values (�/q0), in which the compression lines coincide (Fig.
8(b)). As one would expect, the weaker assemblies exhibit
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more breakage for the same magnitude of stress (30 MPa); a
more well-graded aggregate has evolved in Fig. 9.

For real soils subjected to one-dimensional clastic com-
pression, the compression line is commonly observed to
experience a change in curvature at very high stresses (e.g.
McDowell, 2002). This is usually attributed to the largest
particles being well protected by many neighbours, which
means that low tensile stresses are induced, and to the
smallest particles reaching the comminution limit, which
means that fracture is no longer possible. Repeating the
initial simulation (using parameters for the silica sand) but

limiting the smallest permitted particle size reveals similar
results. Capping the smallest particle size ds at 0.5 mm
(25% of d0) (i.e. particles of size ds have infinite strength)
results in the compression line and grading curve shown in
Fig. 10 alongside those from the initial simulation. The
comminution limit clearly causes a change in curvature of
the compression line at high stresses. The grading curve
reveals the slightly different nature of the evolving material.
As one would expect, the grading curve for the material with
a finite minimum size curtails to 0% passing at a larger
diameter than the uncapped material. The increasing quantity
of unbreakable small particles necessitates the larger parti-
cles breaking, which is also evident in the grading curve.
For a vertical applied stress of 30 MPa, the uncapped
material has a greater percentage of particles larger than
0.8 mm and 1.6 mm than the material with a comminution
limit.

As mentioned, the primary simulation became unsupporta-
ble when low voids ratios were reached, which was the case
for the following simulations, where it was not possible to
achieve macroscopic stresses as high as in the experimental
work (e.g. 100 MPa).

Owing to the monodispersity and lack of particle shape, it
is difficult to conduct oedometer tests at different voids
ratios. However, Fig. 11 compares the initially monodisperse
simulation with another featuring a particle size distribution.
Both simulations have the same strength parameters
(q0 ¼ 37.5 MPa, m ¼ 3.3), assumed hardening law (equation
(4)) and median grain size (d50 ¼ 2 mm); however, the
graded sample has a coefficient of uniformity cu of 1.5,
giving minimum and maximum initial grain sizes of 1.3 mm
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and 3.0 mm respectively, starting with 820 initial particles.
The sample is again generated in a random dense state,
resulting in an initial voids ratio lower than the monodis-
perse sample. The compression lines have similar yield
points, but more significantly they appear to have the same
slope, which agrees with experimental observations (e.g.
Nakata et al., 2001a; McDowell, 2002) where, for a given
sand, the plastic compressibility index is a constant indepen-
dent of initial grading.

Simulations have been performed on monodisperse assem-
blies with the same initial size d0 and strength q0, but with
various Weibull moduli. Decreasing the modulus increases
the variability in strength, and also governs the assumed
size-hardening law according to equation (4). With
d0 ¼ 2 mm and q0 ¼ 37.5 MPa, q0 is plotted as a function of
particle size for various values of Weibull modulus that are
related to the slope of the lines in Fig. 12, according to
equation (4). The resulting normal compression lines and the
ensuing particle size distributions as a function of applied
stress for assemblies with varying Weibull moduli are shown
in Fig. 13.

It is apparent from the normal compression curves that,
for a given initial value of q0, the Weibull modulus dictates
the rate of onset of yielding (the maximum curvature of the
plot). Furthermore, because it has been assumed to control
the hardening law (equation (4)), it also affects the gradient
of the normal compression line following yield. As the

modulus decreases, there is more variation in particle
strengths for any given particle size. This means a portion
of weaker particles, and hence the earlier onset of yielding
and a less well-defined yield point.

The modulus of 4.0 means a fairly narrow distribution of
strengths, which explains why this simulation demonstrated
the latest and most sudden yielding. It also reduces the
hardening effect (i.e. d reduces more rapidly with increasing
stress), and so has the steepest normal compression line and
most overall breakage. The final number of particles is
greater than for all lower values of m. The lowest modulus,
m ¼ 1.0, shows some very early breakage, but a more
gradual, early yield point followed by a shallower normal
compression line. The grading curves reveal that the lowest
modulus exhibits fewest breakages and the least developed
grading; the highest modulus displays the most breakage and
an evolved grading curve. Because the hardening law in
equation (4) has been assumed, m governs both the rate of
onset of yield and the plastic compressibility index, which
will be separated later in the paper.

A lower modulus implies material ‘disorder’. Considering
critical flaw size, with regards to Griffith’s law (Griffith,
1920), high Weibull moduli would imply that, as grain size
decreases, the size of the critical flaw becomes a higher
proportion of the particle, meaning a narrower overall dis-
tribution of critical flaws (and critical stress) and less
variability, regardless of particle size. A low modulus im-
plies, however, that as particle size increases, the critical
flaw size increases at a greater rate (suggesting an upper
limit of particle size), and resulting in much more variation
in critical flaw size and fracture stress.
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Alternative breakage mechanisms
Two alternative breakage mechanisms have been explored:

splitting into three and four equal fragments. For these
mechanisms the new particles created overlap, and are
completely within the boundary of the original particle. This
is similar to some of the investigative work performed by
Ben-Nun & Einav (2010), except in three dimensions and
with different breakage criteria and mechanisms. Ben-Nun &
Einav explored three breakage configurations: splitting into
three, five and six particles, in each case randomly oriented.
However, the kinematic constraints of this process are very
different in three dimensions.

When splitting into three fragments (trilateral breakage),
the emergent particles are placed at equal distance from one
another and from the centre of mass of the original particle
(Fig. 14(a)). One emergent particle is placed in the direction

of the major principal stress, while the axis connecting the
centres of the two other emergent particles lies in the
direction of the minor principal stress. The three fragments
move outwards, along the lines connecting their centres of
mass to that of the original parent particle.

For the case of splitting into four equal fragments (quad-
rilateral breakage), the emergent particles are placed in an
equal quadrilateral arrangement, aligned with the major and
minor principal stress axes. The overlap causes the particles
to move outwards radially from the central point, in equal
directions in the minor–major stress plane (Fig. 14(b)). The
same initial sample was used, with d0 ¼ 2 mm and m ¼ 3.3,
and an initial strength of q0 ¼ 37.5 MPa.

As can be seen in Fig. 15, there is not much difference in
the normal compression lines; which appear to have very
similar yield points and the same gradient. This suggests
that the manner of breakage does not alter the normal
compression line, which depends only on the particle
strength as a function of size, which is a material constant.
This seems logical, when it is well known that various
densities of the same material converge upon the same
normal compression line (e.g. McDowell, 2002). The fact
that the breakage mechanisms have little or no effect on the
compression lines would imply that they also have little
effect on the grading curves at a given stress. As can be
seen in Fig. 15(b), this seems consistent; there is not much
effect on the particle size distributions, but they are not fully
evolved, so it is difficult to confirm categorically that this is
the case. Ben-Nun & Einav (2010) reported that changing
the breakage configuration did change the final grain size
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Fig. 14. Various splitting mechanisms: (a) ‘trilateral’ (splitting
into three equal particles); (b) ‘quadrilateral’ (splitting into four
particles)
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distributions with regards to the fractal dimension, although
this was in two dimensions, where the kinematic constraints
are very different.

Alternative hardening laws
It seems rational to investigate size-hardening laws that

are independent of the Weibull modulus, isolating the size
effect from the distribution of strengths. Two additional
alternatives have been employed. Each hardening law has its
own degree of justification; however, the purpose here is to
determine the sole effects that the size-hardening law has on
normal compression, rather than which provides the most
realistic results.

The first alternative assumes that surface-initiated flaws
dominate fracture. This would mean that the surface area of
a particle is the influential factor instead of volume. Using
Weibull statistics, as before, leads to the relationship

q0 / d�2=m (5)

The second alternative is based on Griffith’s law of fracture
mechanics (Griffith, 1920). Assuming that the size of the
critical flaw, a, in a particle is proportional to its size (i.e.
a / d ), Griffith states that the fracture stress is proportional
to the square root of the flaw size, so we can say

q0 / d�1=2 (6)

Using strength and size parameters as before
(q0 ¼ 37.5 MPa, d0 ¼ 2 mm, and m ¼ 3.3), it is possible to
compare the various size-hardening laws for a given initial
distribution of strengths. Fig. 16 shows the corresponding
normal compression lines and final grading curves for the
three laws described above. For the alternative hardening
rules (i.e. equations (5) and (6)), plastic compressibility
changes for a given Weibull modulus. This resulted in so
much particle breakage and reduction in voids ratio that it
was not always possible to reach high stresses. This is
evident in the normal compression graph: if the compression
lines remained linear they would approach very low voids
ratios before reaching 100 MPa. In reality, the compression
line would undergo a change in curvature due to the
comminution limit, as discussed earlier. All three compres-
sion lines have the same yield point and rate of onset of
yield, because the Weibull modulus is the same. This
confirms that the initial distribution of strengths determines
the nature of yielding. It is evident that Griffith’s hardening
law, which gives the smallest size effect on particle strength,
gives the steepest compression line. When a particle breaks
in the simulation with the original hardening law (equation
(4)), the new fragments have higher strengths than in the
other two simulations, giving the compression line a shal-
lower gradient, as larger stresses are required to break
particles and reduce the voids ratio. This shows that it is the
hardening law exclusively that determines the slope of the
compression line. This is consistent with what was observed
in Fig. 13 when changing the modulus, but this time without
altering the strength distribution. If one considers the ex-
treme case where particle sizes of all sizes have equal
strengths, this would lead to a catastrophic collapse in void
volume after yield.

Alternative strength distributions
Continuing to separate the dual effects of the hardening

law and strength distribution, it is possible to vary the
distribution of strengths for a given size of particle while
keeping the size effect on strength constant. Using the

assumed law from equation (4), with a modulus of 3.3,
simulations were conducted using alternative distributions of
particle strengths, so that Weibull cannot be deemed to be
essential for normal compression. The variance of the dis-
tribution of initial strengths determines the rate of onset of
yield, and to establish whether non-Weibullian distributions
have the same effect, different distributions have been
employed. Two dissimilar uniform distributions of strengths
were used, as well as a simulation using a single particle
strength. All distributions (including single strength) had the
same initial mean strength and size-hardening law. The mean
value of strength, qm, for a Weibull distribution is given by

qm ¼ q0ˆ
1

m
þ 1

� �
(7)

where ˆ is the gamma function. Values of m ¼ 3.3 and
q0 ¼ 37.5 MPa give a mean strength of 33.6 MPa, so the non-
Weibullian distributions are given this average initial strength
to enable comparison. Because qm / q0, average strength has
the same hardening law. That is to say, for each strength
distribution, including a single strength as a function of size,
it was assumed that

qm / d�3=3:3 (8)

For the first alternative, the particle strengths for a single
particle size satisfy a uniform distribution with a fixed range
of 60 MPa: that is, for particles of size d, crushing strengths
lie within the range qm,d � 30 MPa. The second alternative
simulation also makes use of uniform distributions, but with
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a constant coefficient of variation, so that the standard
deviation in particle strength for a given size is proportional
to its mean, with a minimum strength of 0 MPa.

The normal compression lines for these three simulations,
along with the simulation using a Weibull distribution of
strengths, are given in Fig. 17. As expected, all simulations
display the same slope at high stresses (about 0.5). The lines
appear to converge, although there is a slight deviation
exhibited by the simulation with varying range (constant
coefficient of variation). Clearly, the distribution of strengths
governs the rate of onset of yield, but it is the average
strength as a function of particle size that governs the slope
of the normal compression line. All plots have approxi-
mately equal slopes at 30 MPa. The simulation with single
particle strengths for a given size shows the latest, most
sudden onset of yield before a sharp reduction in voids ratio.
This is consistent with experiments on glass beads, which
tend to have a low variability in strength (m � 6) and
uniform grading (Nakata et al., 2001b). The two simulations
with uniformly distributed strengths undergo a more gradual
onset of yielding, as does the simulation with strengths
satisfying a Weibull distribution.

Fractal distributions
Inspecting the respective particle size distribution suggests

that fractal distributions have emerged. A fractal distribution
is one such that

N L . dð Þ / d�D (9)

where N is the number of particles of size L greater than
size d, and D is the fractal dimension (Turcotte, 1986). The
nature of this equation means that a fractal distribution
would appear linear on a distribution plot with two logarith-
mic axes, with the fractal dimension emerging as the slope.
Most granular materials (not only soils but also materials
such as fault gouge and ice) under pure crushing evolve
towards a distribution with a fractal dimension between 2.0
and 3.0, remarkably usually about 2.5 (Turcotte, 1986;
Sammis et al., 1987; Palmer & Sanderson, 1991; Steacy &
Sammis, 1991; McDowell & Daniell, 2001), with two-
dimensional materials developing a dimension between 1.0
and 2.0. The simulations of Ben-Nun & Einav (2010)
resulted in fractal dimensions of around 1.2–1.4 for discs.

Considering only the initial sample with silica sand para-
meters (d0 ¼ 2 mm, q0 ¼ 37.5 MPa, m ¼ 3.3), as this simula-
tion has the most fully evolved grading, it certainly appears
that a fractal distribution has emerged. The number of

particles by percentage with a larger diameter is plotted
against diameter on a logarithmic scale in Fig. 18. The
curves appear exponential. These data are plotted again with
the percentage by number of particles also on a logarithmic
axis in Fig. 19, and the linearity implies fractal geometry.
The slope becomes steeper (i.e. the fractal dimension in-
creases) with increasing stress, with the slope appearing to
become constant, indicating that a steady value has been
reached. As the stress increases, the linear portion of the
curve from which the fractal dimension can be obtained
increases in length, suggesting a more reliable value. The
final slope (30 MPa) gives a value of D ¼ 2.5, which is
encouraging, considering what is observed for natural gran-
ular materials. Plotting the absolute number of particles (also
on a logarithmic axis) against diameter, in Fig. 20, shows
that it is almost solely the smallest particles that are fractur-
ing as the stress is increased. Despite encompassing approxi-
mately 20 000 particles, the final distribution covers only
approximately one log cycle of sizes, which should be
considered a narrow range. In Ben-Nun & Einav’s two-
dimensional analysis (Ben-Nun & Einav, 2010), their final
distributions spanned almost two log cycles.

McDowell & Daniell (2001) investigated why a value of
about 2.5 consistently emerges for soils and other granular
materials. They analysed simulations from Steacy & Sammis
(1991), which featured arrays of uniform blocks with various
fragmentation mechanisms. Using a deterministic mechanism
such that no neighbouring blocks could exist at the same
size as each other resulted in a fractal dimension of 2.6. The
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criteria for what defined two blocks to be considered ‘neigh-
bouring’ were investigated by Steacy & Sammis (1991), as
well as giving blocks a probability of failure dependent on
the number of same-sized neighbours. Also investigated was
the effect of a ‘stress bias’, which rendered particles more
vulnerable to breakage if near a previous breakage. These
different permutations resulted in fractal dimensions between
2.0 and 2.9. McDowell & Daniell (2001) drew attention to
the fact that a value of 2.5 emerged when neighbouring
blocks were defined as blocks having finite contact area, and
a ‘stress bias’ influenced the probability of fracture, although
it should be recognised that this was using cubes.

Hence it would seem worthwhile to examine neighbouring
particles after undergoing one-dimensional compression. De-
fining neighbouring particles simply as two particles that are
in direct contact (i.e. there exists an overlap and force acting
between them), it is possible to observe how many same-
sized particles are neighbours. The number of neighbouring
particles of equal size, in terms of percentage of total
particles in contact, is plotted against macroscopic vertical
stress in Fig. 21 for the original simulation based on data
for silica sand. For the initially uniform sample, all contacts
are between equal-sized particles; after loading to 30 MPa,
approximately 15% of all contacts are between particles of
the same size. This value appears to exhibit little change
after about 15 MPa, suggesting a steady condition. This is
not quite the 0% speculated by Steacy & Sammis (1991),
but it seems very reasonable when recognising that particles
are considered most vulnerable when loaded by neighbouring
particles of the same size, as this allows the particle to be
loaded at opposite poles, inducing the maximum tensile
stress. If this graph is compared with Fig. 22, which shows
the fractal dimensions derived from the progressive grading
curves for the same simulation, it shows a similar develop-
ment under increasing stress: the fractal dimension reaches
2.5 when the number of same-sized neighbours reaches a
minimum.

However, more is revealed by examining the contacts
within the final crushed sample with regard to individual
particle sizes. The particles can be described in terms of
their hierarchical ‘rank’, or size, with the largest (initial)
particle size d0, and fragmentation producing subsequent
particle sizes d1, d2, . . ., ds, where ds is the smallest. After
compression, there are approximately 202 largest particles,
size d0, which have an average of 22.2 contacts each. For
these 202 particles, the number of particles having one or
more same-sized neighbours is 163, giving an average num-
ber of contacts with same-sized neighbours of 1.4. The

remaining contacts are with smaller grains, as no larger
particles exist. Considering the next sizes of particles
(d1, d2, . . ., d8), each rank increases in quantity as the
particle size decreases, with approximately 3000 particles of
size d8 (0.32 mm). As one would expect, the average total
number of contacts per ball reduces with decreasing particle
size. However, interestingly, what remains constant is the
number of contacts with particles of equal or larger size.
Particles of all these sizes have an average of approximately
two contacts with particles of equal or larger diameter. This
number remains constant across the range of sizes, while the
average number of contacts with smaller particles, and hence
the average total number of contacts per ball, decreases
steadily with reducing particle size. This apparent self-
similarity is also visible in Fig. 7(c), where similar random
packing is visible across the scales. These observations
imply that the particle size distribution is indeed fractal in
character, at least across the intermediate range of the
discrete distribution. The subsequent ranks of particles (i.e.
d9, d10, . . ., up to d32) decrease in number and have not fully
evolved, with just four particles of size d32 ¼ 0.0012 mm.

It appears that it is breakage of particles that are primarily
loaded by same-sized or larger particles that leads to a
stable, fractally distributed material. In this model, almost
all particles – regardless of rank – have an average of two
contacts with equally sized or larger particles; however, the
smallest particles have far fewer total contacts, and are
therefore much more likely to have a high induced octahe-
dral shear stress and continue to fracture as stress increases,
leading to a fractal distribution of particle sizes, apparently
tending towards an ultimate fractal dimension of 2.5.

With regard to the effect of a ‘stress bias’, there is almost
certainly an influence when a single particle breakage is
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considered. The vertical load that was carried through the
original particle will be apportioned to the surrounding
particles, causing an increased stress concentration in the
surrounding area. The simulations performed by Steacy &
Sammis (1991) did not involve loading the array of blocks,
which is why they deemed it necessary to implement an
artificial influence. It seems sensible to assume there is such
an influence in a loaded, stress-controlled simulation. For a
single incidence of breakage, scanning the new fragments
reveals that usually between 20% and 30% of them are
within two radii distance of a particle that broke on the
previous occasion, which supports this idea.

Log e–log � plot
A double logarithmic plot was suggested by Pestana &

Whittle (1995), who described typical values for the compres-
sion slope for sand lying between 0.30 and 0.50, usually
towards the upper limit of 0.5. The compression line for silica
sand from McDowell (2002) has a slope of 0.46 (� 0.5) when
plotted on double logarithmic axes. The simulation in this
paper using the data of McDowell’s silica sand has a corre-
sponding slope of 0.5, which shows significant agreement,
and both are within the correct range (see Fig. 23).

McDowell (2005) justified the use of a double logarithmic
plot, and went on to validate the slope of the compression
line physically using fractal crushing theory. McDowell used
an assumed fractal dimension of 2.5, which is what many
granular materials evolve to under pure crushing (McDowell
& Daniell, 2001). The plots show fractal dimensions in good
agreement with this, and from Fig. 22 one might assume
that the value of 2.5 remains consistent at higher stress
levels with further crushing. Assuming a value of 2.5,

McDowell (2005) showed that, for a granular material with
strengths forming a Weibull distribution with a modulus of
about 3, the slope of the normal compression line should be
about 0.5 on a log e–log � plot.

Following McDowell, assuming a fractal dimension of 2.5,
from equation (9) we can say that the number of particles N
greater than or equal to a size di is given by

N L > dið Þ / d�2:5
i (10)

Considering again a hierarchical splitting model, with largest
(initial) particle size d0, and subsequent broken particle sizes
d1, d2, . . ., ds, the distribution of discrete sizes can be
approximated to be fractal if it covers a wide range of scales
(Turcotte, 1986; Palmer & Sanderson, 1991). Using equation
(10) and considering the next smaller size of particle diþ1,
we can write

N L > diþ1ð Þ / d�2:5
iþ1 (11)

Subtracting gives the number of particles with size equal to
diþ1

N L ¼ diþ1ð Þ ¼ N L > diþ1ð Þ � N L > dið Þ (12)

This can be written

N L ¼ diþ1ð Þ ¼ N L > diþ1ð Þ 1� di

diþ1

� �� �
/ d�2:5

iþ1 (1� n1=3)

(13)

where n is the number of fragments produced by each
fracture, and is constant. Equation (13) implies a constant
probability of fracture between each size (Turcotte, 1986;
Palmer & Sanderson, 1991). This is sensible, because the
normal compression lines have been shown to be indepen-
dent of the distribution of strengths for a given particle size,
and therefore the probability of fracture must be dominated
by the loading geometry, as discussed earlier. It can be
inferred that for the smallest size (i.e. particles of size ds),
some of which will break when stress is increased (a
proportion of each particle size in the hierarchical splitting
model remains as stress increases; this is what gives the
fractal distribution)

N L ¼ dsð Þ / d�2:5
s (14)

which, considering volume, leads to

V L ¼ dsð Þ ¼ N L ¼ dsð Þd3
s / d0:5

s (15)

The size of the smallest particle is a function of stress level
according to the assumed hardening law for the soil. Recal-
ling the original hardening law in equation (4), rewritten for
the smallest particles as

qm / d�3=m
s (16)

and given that the current macroscopic stress � is propor-
tional to the average strength of the smallest grains, rearran-
ging and substituting equation (16) into equation (15) gives

V L ¼ dsð Þ / ��m=6 (17)

McDowell (2005) proposed that the void space is dominated
by the smallest particles (it is well known, for example, that
soil permeability is governed by the smallest particle sizes;
Hazen, 1911). McDowell proposed, and justified in terms of
the implied particle kinematics, that the void space is
proportional to the total volume of the smallest particles
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once a fractal distribution has emerged. In this case, equa-
tion (17) implies

e / ��m=6 (18)

A power law in this form makes sense when one considers
that the void space is dependent on the smallest particle
size. The smallest particle must in turn be related to the
stress level according to the size effect on strength – which
is a power law, and is assumed in this case to be governed
by the Weibull modulus. The void space should therefore be
a power function of stress, giving a linear normal compres-
sion line on double logarithmic axes.

The value of 3.3 used in the simulations can, for all
intents and purposes, be considered equivalent to the value
of 3 for which McDowell (2005) attained a slope of 0.5.
Using the same approach for the assumed hardening law in
equation (4), materials with Weibull moduli of about 4, 3, 2
and 1 should have slopes equal to approximately 0.7, 0.5,
0.3 and 0.2 respectively, according to equation (18). The
normal compression lines are plotted in Fig. 24 for the range
of m values used in the above simulations. For moduli of
approximately 4, 3, 2 and 1, the slopes are 0.7, 0.5, 0.3 and
0.2 respectively. These values agree with the values pre-
dicted using McDowell’s physical justification. All the lines
appear linear, confirming a power law.

Pestana & Whittle (1995) supposed that sands should have
a slope in the region of 0.3–0.5, which, assuming the
original hardening law is applicable (equation (4)), would
correspond to a material with crushing strengths obeying
Weibull statistics with a modulus in the range 1.8–3.0. This
fits data from the literature: typical values of m for various
sands are in the region 1.5 to 3.3 (e.g. Nakata et al., 2001b;
McDowell, 2001).

Considering the alternative hardening laws, if surface
flaws are alleged to dominate fracture and equation (5) is
assumed, then the following relationship can be arrived at in
a similar fashion to above

e / ��m=4 (19)

Conversely, if the other alternative hardening relationship is
used, assuming Griffith’s law, we obtain the relationship

e / ��1 (20)

These would predict slopes of about 0.8 and 1.0 for the
former and latter hardening laws respectively, and Fig. 25
appears encouraging, indicating similar values for the slopes,

although the compression lines cannot be considered long
enough to confirm this is the case.

It has therefore been shown that the plastic compressibil-
ity of granular materials is solely a function of the size
effect on particle strength. This has implications for the
prediction for compressibility of aggregates comprising very
large particles. For example, if one is interested in the
compressibility of a rockfill dam, then by crushing individual
rocks and obtaining the size effect on strength, one would
be able to predict the compressibility.

If particle strengths are related to size by a law in the
form

q0 / d�b (21)

and one-dimensional compression can be described by the
following equation

log e ¼ log e0 � C log � (22)

we have shown that the compressibility index C is a function
of the parameter b: C ¼ f (b). Specifically, the following
relationship can be inferred from the physical justification
by McDowell (2005) and results of simulations with various
assumed hardening laws.

C ¼ 1

2b
(23)

Hence the end result is that, for the first time, we have the
following equation for the normal compression line

log e ¼ log e0 �
1

2b
log � (24)

where b controls the particle size effect on strength. Strictly
speaking, to be dimensionally consistent, we should write

log e ¼ log ey �
1

2b
log

�

� y

(25)

where ey is the value on the linear log-log plot at a stress
corresponding to the yield stress �y, and �y is proportional
to the average particle strength.

In addition, for the first time, simulations in three dimen-
sions have used a reasonable number of particles, which
holds much promise for use in boundary value problems.

CONCLUSIONS
The discrete element method has been used to simulate

one-dimensional compression and investigate particle crush-
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ing and the evolution of fractal particle size distributions.
Particle fracture has been simulated using a range of very
simple mechanisms, replacing the breaking particle with new
smaller particles while maintaining constant mass. Pre-
viously, only agglomerates have been used to simulate
particle crushing in three dimensions during compression;
these demand a very large number of initial particles and
bonds. Particle fracture was governed by the octahedral
stress within a particle, which takes into account multiple
contacts, and has been related to data measured from single
particle crushing tests.

Normal compression lines are clearly observed, and the
observed slope is consistent with the theoretical prediction.
For an initially uniform particle size, the rate of onset of
yield is a function of the distribution of particle strengths.
For an initial voids ratio and given Weibull modulus (coeffi-
cient of variation), the yield stress is proportional to the
average particle octahedral shear strength. The slope of the
normal compression line and the particle size distribution
appear to be independent of the breakage mechanism or the
distribution of strengths, and dependent solely on the size
effect on average particle strength. It is now clear, for the
first time, that the plastic compressibility index is simply the
hardening law due to the smallest particles breaking and
becoming statistically stronger. This has implications for the
prediction of the compressibility of aggregates comprising
large particles.

The evolution of a fractal particle size distribution appears
to be triggered by the tendency of similar-sized neighbouring
particles to fracture. The results show clearly that a fractal
distribution of particle sizes emerges, with a fractal number
of 2.5. The simulations also show the correct behaviour if a
comminution limit is included, such that the compressibility
index reduces at high stresses.

The compression lines have also been plotted in log e–
log � space; the prediction for silica sand shows agreeable
similarity to the experimental results, and the slope is in
agreement with both the experiment and McDowell’s (2005)
theoretical prediction.

The overall results show encouraging similarity with
widely reported physical behaviour. Given that the simplest
assumptions have been made (particles split according to
octahedral shear stress, and the fragments move in the
direction of the minor principal stress), the resulting simula-
tions have shown an insight into one-dimensional compres-
sion and replicated this process correctly in three
dimensions for the first time. It would appear that the micro
mechanics of normal compression have finally been ex-
posed.

The model holds much promise in the application to
solving boundary value problems, now that agglomerates are
not required to simulate the crushing process.

NOTATION
a critical flaw size
b size effect on strength for a material
C slope of normal compression line in log e:log � space
cu coefficient of uniformity
D fractal dimension
d particle size (diameter)

d0 initial particle size
ds smallest particle size
e voids ratio

ey voids ratio corresponding to yield stress on linear log e–log �
plot

F force
G shear modulus
L particle size
m Weibull modulus

N number of particles
q octahedral shear stress in a particle

qm mean octahedral shear stress
q0 value of octahedral shear stress such that 37% of particles are

stronger for a given particle size
V volume of particles
ˆ gamma function
� stress
�1 major principal stress in particle
�2 intermediate principal stress in particle
�3 minor principal stress in particle
�y yield stress on log e–log � plot
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55, No. 9, 697–698, http://dx.doi.org/10.1680/geot.2005.55.9.
697.

McDowell, G. & Bolton, M. D. (1998). On the micro mechanics of
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