56 research outputs found

    Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast

    Get PDF
    Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future

    Read-out electronics for digital silicon photomultiplier modules

    Get PDF
    A new kind of a PET-Scanner (PET = positron emission tomography) for plant research is developed asa joint project of the Forschungszentrum Jülich and Philips Digital Photon Counting (PDPC). Thisscanner will utilize digital silicon photomultiplier (dSiPM) for plant phenotyping for the very first time.The goal of this work is to get a further knowledge of the operation of digital silicon photomultiplier.On this account a test-facility for this new photo detectors has been installed at the central instituteof engineering, electronics and analytics (ZEA-2 electronic systems) to determine the usage of thissensors, having regard to use them as scintillation detectors in a PET-Scanner later on.This work has its focus on the development of a fast read-out electronic for the used photo sensorsDPC3200-22-44. As there will be high data rates a fast USB 3.0 interface has been used. All thenecessary processing and data handling has been implemented in a state of the art FPGA

    First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam

    Get PDF
    Based on the notion that the local dark-matter field of axions or axion-like particles (ALPs) in our Galaxy induces oscillating couplings to the spins of nucleons and nuclei (via the electric dipole moment of the latter and/or the paramagnetic axion-wind effect), we performed the first experiment to search for ALPs using a storage ring. For that purpose, we used an in-plane polarized deuteron beam stored at the Cooler Synchrotron COSY, scanning momenta near 970 MeV/c. This entailed a scan of the spin precession frequency. At resonance between the spin precession frequency of deuterons and the ALP-induced EDM oscillation frequency there will be an accumulation of the polarization component out of the ring plane. Since the axion frequency is unknown, the momentum of the beam and consequently the spin precession frequency were ramped to search for a vertical polarization change that would occur when the resonance is crossed. At COSY, four beam bunches with different polarization directions were used to make sure that no resonance was missed because of the unknown relative phase between the polarization precession and the axion/ALP field. A frequency window of 1.5-kHz width around the spin precession frequency of 121 kHz was scanned. We describe the experimental procedure and a test of the methodology with the help of a radiofrequency Wien filter located on the COSY ring. No ALP resonance was observed. As a consequence an upper limit of the oscillating EDM component of the deuteron as well as its axion coupling constants are provided.Comment: 25 pages, 24 figures, 7 tables, 67 reference

    SOAP für Web Services

    No full text

    XML - The Extensible Markup Language and its Application in the Field of EDI

    No full text
    corecore