6 research outputs found

    Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study

    Get PDF
    BackgroundSerum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities.MethodsWe analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained FindingsAll biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87–0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83–0•86] to 0•89 [95%CI: 0•87–0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone.InterpretationCurrently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required.FundingCENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).</p

    Tracheal intubation in traumatic brain injury: a multicentre prospective observational study

    Get PDF
    Background We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration NCT02210221

    Health-related quality of life after traumatic brain injury : deriving value sets for the QOLIBRI-OS for Italy, The Netherlands and The United Kingdom

    Get PDF
    Purpose The Quality of Life after Brain Injury overall scale (QOLIBRI-OS) measures health-related quality of life (HRQoL) after traumatic brain injury (TBI). The aim of this study was to derive value sets for the QOLIBRI-OS in three European countries, which will allow calculation of utility scores for TBI health states. Methods A QOLIBRI-OS value set was derived by using discrete choice experiments (DCEs) and visual analogue scales (VAS) in general population samples from the Netherlands, United Kingdom and Italy. A three-stage procedure was used: (1) A selection of health states, covering the entire spectrum of severity, was defined; (2) General population samples performed the health state valuation task using a web-based survey with three VAS questions and an at random selection of sixteen DCEs; (3) DCEs were analysed using a conditional logistic regression and were then anchored on the VAS data. Utility scores for QOLIBRI-OS health states were generated resulting in estimates for all potential health states. Results The questionnaire was completed by 13,623 respondents. The biggest weight increase for all attributes is seen from "slightly" to "not at all satisfied", resulting in the largest impact on HRQoL. "Not at all satisfied with how brain is working" should receive the greatest weight in utility calculations in all three countries. Conclusion By transforming the QOLIBRI-OS into utility scores, we enabled the application in economic evaluations and in summary measures of population health, which may be used to inform decision-makers on the best interventions and strategies for TBI patients.Peer reviewe

    Vibrational spectroscopy for the triage of traumatic brain injury computed tomography priority and hospital admissions

    Get PDF
    Computed tomography (CT) brain imaging is routinely used to support clinical decision-making in patients with traumatic brain injury (TBI). Only 7% of scans, however, demonstrate evidence of TBI. The other 93% of scans contribute a significant cost to the healthcare system and a radiation risk to patients. There may be better strategies to identify which patients, particularly those with mild TBI, are at risk of deterioration and require hospital admission. We introduce a blood serum liquid biopsy that utilizes attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy with machine learning algorithms as a decision-making tool to identify which patients with mild TBI will most likely present with a positive CT scan. Serum samples were obtained from patients (n = 298) patients who had acquired a TBI and were enrolled in CENTER-TBI and from asymptomatic control patients (n = 87). Injury patients (all severities) were stratified against non-injury controls. The cohort with mild TBI was further examined by stratifying those who had at least one CT abnormality against those who had no CT abnormalities. The test performed exceptionally well in classifications of patients with mild injury versus non-injury controls (sensitivity = 96.4% and specificity = 98.0%) and also provided a sensitivity of 80.2% when stratifying mild patients with at least one CT abnormality against those without. The results provided illustrate the test ability to identify four of every five CT abnormalities and show great promise to be introduced as a triage tool for CT priority in patients with mild TBI

    Occurrence and timing of withdrawal of life-sustaining measures in traumatic brain injury patients:a CENTER-TBI study

    Get PDF
    BACKGROUND: In patients with severe brain injury, withdrawal of life-sustaining measures (WLSM) is common in intensive care units (ICU). WLSM constitutes a dilemma: instituting WLSM too early could result in death despite the possibility of an acceptable functional outcome, whereas delaying WLSM could unnecessarily burden patients, families, clinicians, and hospital resources. We aimed to describe the occurrence and timing of WLSM, and factors associated with timing of WLSM in European ICUs in patients with traumatic brain injury (TBI). METHODS: The CENTER-TBI Study is a prospective multi-center cohort study. For the current study, patients with traumatic brain injury (TBI) admitted to the ICU and aged 16 or older were included. Occurrence and timing of WLSM were documented. For the analyses, we dichotomized timing of WLSM in early (< 72 h after injury) versus later (≥ 72 h after injury) based on recent guideline recommendations. We assessed factors associated with initiating WLSM early versus later, including geographic region, center, patient, injury, and treatment characteristics with univariable and multivariable (mixed effects) logistic regression. RESULTS: A total of 2022 patients aged 16 or older were admitted to the ICU. ICU mortality was 13% (n = 267). Of these, 229 (86%) patients died after WLSM, and were included in the analyses. The occurrence of WLSM varied between regions ranging from 0% in Eastern Europe to 96% in Northern Europe. In 51% of the patients, WLSM was early. Patients in the early WLSM group had a lower maximum therapy intensity level (TIL) score than patients in the later WLSM group (median of 5 versus 10) The strongest independent variables associated with early WLSM were one unreactive pupil (odds ratio (OR) 4.0, 95% confidence interval (CI) 1.3–12.4) or two unreactive pupils (OR 5.8, CI 2.6–13.1) compared to two reactive pupils, and an Injury Severity Score (ISS) if over 41 (OR per point above 41 = 1.1, CI 1.0–1.1). Timing of WLSM was not significantly associated with region or center. CONCLUSION: WLSM occurs early in half of the patients, mostly in patients with severe TBI affecting brainstem reflexes who were severely injured. We found no regional or center influences in timing of WLSM. Whether WLSM is always appropriate or may contribute to a self-fulfilling prophecy requires further research and argues for reluctance to institute WLSM early in case of any doubt on prognosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00134-021-06484-1
    corecore