451 research outputs found

    Regulatory T cells as a possible new target in epilepsy?

    Get PDF
    Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy

    The HERMES Dual-Radiator Ring Imaging Cerenkov Detector

    Full text link
    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure

    The helicity amplitudes A1/2_{1/2} and A3/2_{3/2} for the D13(1520)_{13}(1520) resonance obtained from the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction}

    Full text link
    The helicity dependence of the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction has been measured for the first time in the photon energy range from 550 to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4π\pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. These data are predominantly sensitive to the D13(1520)D_{13}(1520) resonance and are used to determine its parameters.Comment: 5 pages, 4 figure

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    Get PDF
    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Associated Charm Production in Neutrino-Nucleus Interactions

    Full text link
    In this paper a search for associated charm production both in neutral and charged current ν\nu-nucleus interactions is presented. The improvement of automatic scanning systems in the {CHORUS} experiment allows an efficient search to be performed in emulsion for short-lived particles. Hence a search for rare processes, like the associated charm production, becomes possible through the observation of the double charm-decay topology with a very low background. About 130,000 ν\nu interactions located in the emulsion target have been analysed. Three events with two charm decays have been observed in the neutral-current sample with an estimated background of 0.18±\pm0.05. The relative rate of the associated charm cross-section in deep inelastic ν\nu interactions, σ(ccˉν)/σNCDIS=(3.622.42+2.95(stat)±0.54(syst))×103\sigma(c\bar{c}\nu)/\sigma_\mathrm{NC}^\mathrm{DIS}= (3.62^{+2.95}_{-2.42}({stat})\pm 0.54({syst}))\times 10^{-3} has been measured. One event with two charm decays has been observed in charged-current νμ\nu_\mu interactions with an estimated background of 0.18±\pm0.06 and the upper limit on associated charm production in charged-current interactions at 90% C.L. has been found to be σ(ccˉμ)/σCC<9.69×104\sigma (c\bar{c} \mu^-)/\sigma_\mathrm{CC} < 9.69 \times 10^{-4}.Comment: 10 pages, 4 figure
    corecore