1,346 research outputs found
Improved modelling of liquid GeSe: the impact of the exchange-correlation functional
The structural properties of liquid GeSe are studied by using
first-principles molecular dynamics in conjuncton with the Becke, Lee, Yang and
Parr (BLYP) generalized gradient approximation for the exchange and correlation
energy. The results on partial pair correlation functions, coordination
numbers, bond angle distributions and partial structure factors are compared
with available experimental data and with previous first-principle molecular
dynamics results obtained within the Perdew and Wang (PW) generalized gradient
approximation for the exchange and correlation energy. We found that the BLYP
approach substantially improves upon the PW one in the case of the short-range
properties. In particular, the GeGe pair correlation function takes a more
structured profile that includes a marked first peak due to homopolar bonds, a
first maximum exhibiting a clear shoulder and a deep minimum, all these
features being absent in the previous PW results. Overall, the amount of
tetrahedral order is significantly increased, in spite of a larger number of
GeGe homopolar connections. Due to the smaller number of miscoordinations,
diffusion coefficients obtained by the present BLYP calculation are smaller by
at least one order of magnitude than in the PW case.Comment: 6 figure
Molecular hydrodynamics from memory kernels
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t−3/2. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius
Investigations of fast neutron production by 190 GeV/c muon interactions on different targets
The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus
interactions is poorly understood, yet it is fundamental to the understanding
of the background in many underground experiments. The aim of the present
experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c
muons scattering on carbon, copper and lead targets. We have investigated the
energy spectrum and angular distribution of spallation neutrons, and we report
the result of our measurement of the neutron production differential cross
section.Comment: 19 pages, 11 figures ep
Enhanced Processing of Threat Stimuli under Limited Attentional Resources
The ability to process stimuli that convey potential threat, under conditions of limited attentional resources, confers adaptive advantages. This study examined the neurobiology underpinnings of this capacity. Employing an attentional blink paradigm, in conjunction with functional magnetic resonance imaging, we manipulated the salience of the second of 2 face target stimuli (T2), by varying emotionality. Behaviorally, fearful T2 faces were identified significantly more than neutral faces. Activity in fusiform face area increased with correct identification of T2 faces. Enhanced activity in rostral anterior cingulate cortex (rACC) accounted for the benefit in detection of fearful stimuli reflected in a significant interaction between target valence and correct identification. Thus, under conditions of limited attention resources activation in rACC correlated with enhanced processing of emotional stimuli. We suggest that these data support a model in which a prefrontal “gate” mechanism controls conscious access of emotional information under conditions of limited attentional resources
Hourly resolved cloud modification factors in the ultraviolet
Cloud impacts on the transfer of ultraviolet (UV) radiation through the atmosphere can be assessed by using a cloud modification factor (CMF). CMF, which is based on total global solar irradiation (SOL<sub>CMF</sub>), has proved to be a solid basis to derive CMFs for the UV radiation (UV<sub>CMF</sub>). This is an advantage, because total global irradiance, the basis for SOL<sub>CMF</sub>, is frequently measured and forecasted by numerical weather prediction systems and includes all relevant effects for radiation transmission, such as cloud optical depth, different cloud layers, multiple reflection, as well as the distinct difference as to whether the solar disc is obscured by clouds or not. In the UV range clouds decrease the irradiance to a lesser extent than in the visible and infrared spectral range. Thus the relationship between CMFs for solar radiation and for UV-radiation is not straight forward, but will depend on whether, for example, the solar zenith angle (SZA) and wavelength band or action spectrum in the UV have been taken into consideration. Den Outer et al. provide a UV<sub>CMF</sub> algorithm on a daily basis, which accounts for these influences. It requires as input a daily SOL<sub>CMF</sub> and the SZA at noon. The calculation of SOL<sub>CMF</sub> uses the clear-sky algorithm of the European Solar Radiation Atlas to account for varying turbidity impacts. The algorithm's capability to derive hourly UV<sub>CMFs</sub> based on the SZA at the corresponding hour and its worldwide applicability is validated for erythemal UV using observational data retrieved from the databases of the COST-Action 726 on "Long-term changes and climatology of UV radiation over Europe" and the USDA UV-B Monitoring Program. The clear-sky part of the models has proved to be of good quality. Accumulated to daily doses it forms a tight cluster of points to the highest measured daily sums. All sky model performances for hourly resolution are shown to be comparable in accuracy with the well performing daily models of the COST-726 model intercomparison
Electronic redistribution around oxygen atoms in silicate melts by ab initio molecular dynamics simulation
The structure around oxygen atoms of four silicate liquids (silica, rhyolite,
a model basalt and enstatite) is evaluated by ab initio molecular dynamics
simulation. Thanks to the use of maximally localized Wannier orbitals to
represent the electronic ground state of the simulated system, one is able to
quantify the redistribution of electronic density around oxygen atoms as a
function of the cationic environment and melt composition. It is shown that the
structure of the melt in the immediate vicinity of the oxygen atoms modulates
the distribution of the Wannier orbitals associated with oxygen atoms. In
particular the evaluation of the distances between the oxygen-core and the
orbital Wannier centers and their evolution with the nature of the cation
indicates that the Al-O bond in silicate melts is certainly less covalent than
the Si-O bond while for the series Mg-O, Ca-O, Na-O and K-O the covalent
character of the M-O bond diminishes rapidly to the benefit of the ionic
character. Furthermore it is found that the distribution of the oxygen dipole
moment coming from the electronic polarization is only weakly dependent on the
melt composition, a finding which could explain why some empirical force fields
can exhibit a high degree of transferability with melt composition.Comment: 27 pages, 7 figures. To be published in Journal of Non-Crystalline
Solid
The STARTWAVE atmospheric water database
International audienceThe STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects) project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV) measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS) receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E) tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was ?0.8 mm at Payerne (46.81° N, 6.94° E, 490 m), which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m), which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m), which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of ?2.2 mm (13% of the mean annual IWV) relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying water vapour variations, we investigated a front which crossed Switzerland between 18 November 2004 and 19 November 2004. During the frontal passage, the GPS and microwave radiometers at Bern and Payerne showed an increase in IWV of between 7 and 9 mm. The GPS IWV measurements were corrected to a standard height of 500 m, using an empirically derived exponential relationship between IWV and altitude. A qualitative comparison was made between plots of the IWV distribution measured by the GPS and the 6.2 µm water vapour channel on the Meteosat Second Generation (MSG) satellite. Both showed that the moist air moved in from a northerly direction, although the MSG showed an increase in water vapour several hours before increases in IWV were detected by GPS or microwave radiometer. This is probably due to the fact that the satellite instrument is sensitive to an atmospheric layer at around 320 hPa, which makes a contribution of one percent or less to the IWV
Observation of single collisionally cooled trapped ions in a buffer gas
Individual Ba ions are trapped in a gas-filled linear ion trap and observed
with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage
times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at
pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are
experimentally studied in the simple case of single ions. In particular, the
cooling effects of light gases such as He and Ar and the destabilizing
properties of heavier gases such as Xe are studied. A simple model is offered
to explain the observed phenomenology.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A. Minor
text and figure change
Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism
Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism
- …