11 research outputs found

    Data retention in organic ferroelectric resistive switches

    No full text
    Solution-processed organic ferroelectric resistive switches could become the long-missing non-volatile memory elements in organic electronic devices. To this end, data retention in these devices should be characterized, understood and controlled. First, it is shown that the measurement protocol can strongly affect the apparent retention time and a suitable protocol is identified. Second, it is shown by experimental and theoretical methods that partial depolarization of the ferroelectric is the major mechanism responsible for imperfect data retention. This depolarization occurs in close vicinity to the semiconductor-ferroelectric interface, is driven by energy minimization and is inherently present in this type of phase-separated polymer blends. Third, a direct relation between data retention and the charge injection barrier height of the resistive switch is demonstrated experimentally and numerically. Tuning the injection barrier height allows to improve retention by many orders of magnitude in time, albeit at the cost of a reduced on/off ratio. (c) 2016 Elsevier B.V. All rights reserved.Funding Agencies|European Community [248092]</p

    Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

    Get PDF
    We demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism (IFM) model where the ferroelectric components are regarded as an assembly of randomly distributed regions with independent polarisation kinetics governed by a time-dependent local field. This allows us to write and non-destructively read stable multilevel polarisation states in the organic memory diode using controlled programming pulses. The resulting 2-bit data storage per memory element doubles the storage density of the organic ferroelectric resistive memory diode without increasing its technological complexity, thus reducing the cost per bit.Funding Agencies|Research Grant of Pukyong National University [CD20151148]</p

    Study of the morphology of organic ferroelectric diodes with combined scanning force and scanning transmission X-ray microscopy

    No full text
    \u3cp\u3eOrganic ferroelectric diodes attract increasing interest as they combine non-destructive data read-out and low cost fabrication, two requirements in the development of novel non-volatile memory elements. The macroscopic electrical characteristics and performances of such devices strongly depend on their structural properties. Various studies of their global microscopic morphology have already been reported. Here, a multi-technique approach including different scanning force and X-ray microscopies permitted to reveal and locally study nanometer-scale unexpected sub-structures within a P(VDF-TrFE):F8BT ferroelectric diode. The strong impact of these structures on the local polarizability of the ferroelectric is shown. Two alternative fabrication methods are proposed that prevent the formation of these structures and demonstrate improved macroscopic device performances such as endurance and ON/OFF ratio.\u3c/p\u3

    Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

    Get PDF
    We demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism (IFM) model where the ferroelectric components are regarded as an assembly of randomly distributed regions with independent polarisation kinetics governed by a time-dependent local field. This allows us to write and non-destructively read stable multilevel polarisation states in the organic memory diode using controlled programming pulses. The resulting 2-bit data storage per memory element doubles the storage density of the organic ferroelectric resistive memory diode without increasing its technological complexity, thus reducing the cost per bit.Funding Agencies|Research Grant of Pukyong National University [CD20151148]</p

    3D-Morphology Reconstruction of Nanoscale Phase-Separation in Polymer Memory Blends

    Get PDF
    In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase-separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. (c) 2015 Wiley Periodicals, Inc.Funding Agencies|European Communitys Seventh Framework Programme under MOMA project [248092]</p

    Crossbar arrays of nonvolatile, rewritable polymer ferroelectric diode memories on plastic substrates

    Get PDF
    In this paper, we demonstrate a scalable and low-cost memory technology using a phase separated blend of a ferroelectric polymer and a semiconducting polymer as data storage medium on thin, flexible polyester foils of only 25 µm thickness. By sandwiching this polymer blend film between rows and columns of metal electrode lines where each intersection makes up one memory cell, we obtained 1 kbit cross bar arrays with bit densities of up to 10 kbit/cm2

    Nanoscale Organic Ferroelectric Resistive Switches

    No full text
    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their operational mechanism. Resistive switching is shown to result from modulation of the charge injection barrier at the semiconductor–electrode interfaces. The modulation is driven by the stray field of the polarization charges in the ferroelectric phase and consequently is restricted to regions where semiconductor and ferroelectric phases exist in close vicinity. Since each semiconductor domain can individually be switched and read out, a novel, nanoscale memory element is demonstrated. An ultimate information density of ∼30 Mb/cm<sup>2</sup> is estimated for this bottom-up defined memory device
    corecore