92 research outputs found
Functional analysis identifies damaging CHEK2 missense variants associated with increased cancer risk.
Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 impaired protein function to a similar extent as truncating variants, and 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group (OR 2,23; 95% CI 1,62-3,07; pG/p.D162G, was also identified, which co-segregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer
GPCRDB: information system for G protein-coupled receptors
The GPCRDB is a Molecular Class-Specific Information System (MCSIS) that collects, combines, validates and disseminates large amounts of heterogeneous data on G protein-coupled receptors (GPCRs). The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many different types of computationally derived data such as multiple sequence alignments and homology models. The GPCRDB provides access to the data via a number of different access methods. It offers visualization and analysis tools, and a number of query systems. The data is updated automatically on a monthly basis. The GPCRDB can be found online at http://www.gpcr.org/7tm/
GPCRDB: information system for G protein-coupled receptors
The GPCRDB is a Molecular Class-Specific Information System (MCSIS) that collects, combines, validates and disseminates large amounts of heterogeneous data on G protein-coupled receptors (GPCRs). The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many different types of computationally derived data such as multiple sequence alignments and homology models. The GPCRDB provides access to the data via a number of different access methods. It offers visualization and analysis tools, and a number of query systems. The data is updated automatically on a monthly basis. The GPCRDB can be found online at http://www.gpcr.org/7tm/
Circulating endothelial cells are an early predictor in renal cell carcinoma for tumor response to sunitinib
<p>Abstract</p> <p>Background</p> <p>Tyrosine kinase inhibitors (TKI) have enriched the therapeutic options in patients with renal cell carcinoma (RCC), which frequently induce morphological changes in tumors. However, only little is known about the biological activity of TKI. Circulating endothelial cells (CEC) have been associated with endothelial damage and, hence, may serve as a putative marker for the biological activity of TKI. The main objective of our study was to evaluate the predictive value of CEC, monocytes, and soluble vascular endothelial growth factor receptor (sVEGFR)-2 in RCC patients receiving sunitinib treatment.</p> <p>Methods</p> <p>Analyses of CEC, monocytes, and sVEGFR-2 were accomplished for twenty-six consecutive patients with metastatic RCC who received treatment with sunitinib (50 mg, 4 wks on 2 wks off schedule) at our institution in 2005 and 2006.</p> <p>Results</p> <p>In RCC patients CEC are elevated to 49 Β± 44/ml (control 8 Β± 8/ml; P = 0.0001). Treatment with sunitinib is associated with an increase in CEC within 28 days of treatment in patients with a Progression free survival (PFS) above the median to 111 Β± 61 (P = 0.0109), whereas changes in patients with a PFS below the median remain insignificant 69 Β± 61/ml (P = 0.1848). Monocytes and sVEGFR2 are frequently altered upon sunitinib treatment, but fail to correlate with clinical response, defined by PFS above or below the median.</p> <p>Conclusions</p> <p>Sunitinib treatment is associated with an early increase of CEC in responding patients, suggesting superior endothelial cell damage in these patients as a putative predictive biomarker.</p
Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation
While several clinical studies have shown that HIV-1 infection is associated with increased permeability of the intestinal tract, there is very little understanding of the mechanisms underlying HIV-induced impairment of mucosal barriers. Here we demonstrate that exposure to HIV-1 can directly breach the integrity of mucosal epithelial barrier, allowing translocation of virus and bacteria. Purified primary epithelial cells (EC) isolated from female genital tract and T84 intestinal cell line were grown to form polarized, confluent monolayers and exposed to HIV-1. HIV-1 X4 and R5 tropic laboratory strains and clinical isolates were seen to reduce transepithelial resistance (TER), a measure of monolayer integrity, by 30β60% following exposure for 24 hours, without affecting viability of cells. The decrease in TER correlated with disruption of tight junction proteins (claudin 1, 2, 4, occludin and ZO-1) and increased permeability. Treatment of ECs with HIV envelope protein gp120, but not HIV tat, also resulted in impairment of barrier function. Neutralization of gp120 significantly abrogated the effect of HIV. No changes to the barrier function were observed when ECs were exposed to Env defective mutant of HIV. Significant upregulation of inflammatory cytokines, including TNF-Ξ±, were seen in both intestinal and genital epithelial cells following exposure to HIV-1. Neutralization of TNF-Ξ± reversed the reduction in TERs. The disruption in barrier functions was associated with viral and bacterial translocation across the epithelial monolayers. Collectively, our data shows that mucosal epithelial cells respond directly to envelope glycoprotein of HIV-1 by upregulating inflammatory cytokines that lead to impairment of barrier functions. The increased permeability could be responsible for small but significant crossing of mucosal epithelium by virus and bacteria present in the lumen of mucosa. This mechanism could be particularly relevant to mucosal transmission of HIV-1 as well as immune activation seen in HIV-1 infected individuals
Systematic generation of in vivo G protein-coupled receptor mutants in the rat
G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies
Coordinating the impact of structural genomics on the human Ξ±-helical transmembrane proteome
Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral Ξ±-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human Ξ±-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available
Role of Innate Immunity in the Pathogenesis of Chronic Rhinosinusitis: Progress and New Avenues
Chronic rhinosinusitis is a heterogeneous and multifactorial disease with unknown etiology. Aberrant responses to microorganisms have been suggested to play a role in the pathophysiology of the disease. Research has focused on the presence, detection, response to, and eradication of these potential threats. Main topics seem to center on the contribution of structural cells such as epithelium and fibroblasts, on the consequences of activation of pattern-recognition receptors, and on the role of antimicrobial agents. This research should be viewed not only in the light of a comparison between healthy and diseased individuals, but also in a comparison between patients who do or do not respond to treatment. New players that could play a role in the pathophysiology seem to surface at regular intervals, adding to our understanding (and the complexity) of the disease and opening new avenues that may help fight this incapacitating disease
- β¦