116 research outputs found

    A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component

    Get PDF
    Background The Government of Senegal has embarked several years ago on a project that aims to eradicate Glossina palpalis gambiensis from the Niayes area. The removal of the animal try-panosomosis would allow the development more efficient livestock production systems. The project was implemented using an area-wide integrated pest management strategy including a sterile insect technique (SIT) component. The released sterile male flies originated from a colony from Burkina Faso. Methodology/Principal Findings Monitoring the efficacy of the sterile male releases requires the discrimination between wild and sterile male G.p. gambiensis that are sampled in monitoring traps. Before being released, sterile male flies were marked with a fluorescent dye powder. The marking was however not infallible with some sterile flies only slightly marked or some wild flies contaminated with a few dye particles in the monitoring traps. Trapped flies can also be damaged due to predation by ants, making it difficult to discriminate between wild and sterile males using a fluorescence camera and / or a fluorescence microscope. We developed a molecular technique based on the determination of cytochrome oxidase haplotypes of G. p. gambiensis to discriminate between wild and sterile males. DNA was isolated from the head of flies and a portion of the 5' end of the mitochondrial gene cytochrome oxidase I was amplified to be finally sequenced. Our results indicated that all the sterile males from the Burkina Faso colony displayed the same haplotype and systematically differed from wild male flies trapped in Senegal and Burkina Faso. This allowed 100% discrimination between sterile and wild male G. p. gambiensis. Conclusions/Significance This tool might be useful for other tsetse control campaigns with a SIT component in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) and, more generally, for other vector or insect pest control programs

    Irradiated Male Tsetse from a 40-Year-Old Colony Are Still Competitive in a Riparian Forest in Burkina Faso

    Get PDF
    Background Tsetse flies are the cyclical vectors of African trypanosomosis that constitute a major constraint to development in Africa. Their control is an important component of the integrated management of these diseases, and among the techniques available, the sterile insect technique (SIT) is the sole that is efficient at low densities. The government of Burkina Faso has embarked on a tsetse eradication programme in the framework of the PATTEC, where SIT is an important component. The project plans to use flies from a Glossina palpalis gambiensis colony that has been maintained for about 40 years at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES). It was thus necessary to test the competitiveness of the sterile males originating from this colony. Methodology/Principal Findings During the period January-February 2010, 16,000 sterile male G. p. gambiensis were released along a tributary of the Mouhoun river. The study revealed that with a mean sterile to wild male ratio of 1.16 (s.d. 0.38), the abortion rate of the wild female flies was significantly higher than before (p = 0.026) and after (p = 0.019) the release period. The estimated competitiveness of the sterile males (Fried index) was 0.07 (s.d. 0.02), indicating that a sterile to wild male ratio of 14.4 would be necessary to obtain nearly complete induced sterility in the female population. The aggregation patterns of sterile and wild male flies were similar. The survival rate of the released sterile male flies was similar to that observed in 1983-1985 for the same colony. Conclusions/Significance We conclude that gamma sterilised male G. p. gambiensis derived from the CIRDES colony have a competitiveness that is comparable to their competitiveness obtained 35 years ago and can still be used for an area-wide integrated pest management campaign with a sterile insect component in Burkina Faso. (Résumé d'auteur

    High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools

    Get PDF
    Background: Mosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined. Methods: We evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV). Results: CHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection. Conclusions: Mosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process. Keywords: Arbovirus; Chikungunya virus (CHIKV); Flavivirus; Pool size; RT-qPCR; Usutu virus (USUV); West Nile virus (WNV); Zika virus (ZIKV).info:eu-repo/semantics/publishedVersio

    Contrasting Population Structures of Two Vectors of African Trypanosomoses in Burkina Faso: Consequences for Control

    Get PDF
    Tsetse flies are insects that transmit trypanosomes to humans (sleeping sickness) and animals (nagana). Controlling these vectors is a very efficient way to control these diseases. In Burkina Faso, a tsetse eradication campaign is presently targeting the northern part of the Mouhoun River Basin. To attain this objective, the approach has to be area-wide, i.e. the control effort targets an entire pest population within a circumscribed area. To assess the level of this isolation, we studied the genetic structure of Glossina palpalis gambiensis and Glossina tachinoides populations in the target area and in the adjacent river basins of the Comoé, the Niger and the Sissili River Basins. Our results suggest an absence of strong genetic isolation of the target populations. We therefore recommend establishing permanent buffer zones between the Mouhoun and the other river basin(s) to prevent reinvasion. This kind of study may be extended to other areas on other tsetse species

    Assessment of animal African trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa

    Get PDF
    Background: Animal African trypanosomiasis (AAT) is one of the biggest constraints to livestock production and a threat to food security in sub-Saharan Africa. In order to optimise the allocation of resources for AAT control, decision makers need to target geographic areas where control programmes are most likely to be successful and sustainable and select control methods that will maximise the benefits obtained from resources invested. Methods: The overall approach to classifying cattle-owning communities in terms of AAT vulnerability was based on the selection of key variables collected through field surveys in five sub-Saharan Africa countries followed by a formal Multiple Correspondence Analysis (MCA) to identify factors explaining the variations between areas. To categorise the communities in terms of AAT vulnerability profiles, Hierarchical Cluster Analysis (HCA) was performed. Results: Three clusters of community vulnerability profiles were identified based on farmers’ beliefs with respect to trypanosomiasis control within the five countries studied. Cluster 1 communities, mainly identified in Cameroon, reported constant AAT burden, had large trypanosensitive (average herd size = 57) communal grazing cattle herds. Livestock (cattle and small ruminants) were reportedly the primary source of income in the majority of these cattle-owning households (87.0 %). Cluster 2 communities identified mainly in Burkina Faso and Zambia, with some Ethiopian communities had moderate herd sizes (average = 16) and some trypanotolerant breeds (31.7 %) practicing communal grazing. In these communities there were some concerns regarding the development of trypanocide resistance. Crops were the primary income source while communities in this cluster incurred some financial losses due to diminished draft power. The third cluster contained mainly Ugandan and Ethiopian communities which were mixed farmers with smaller herd sizes (average = 8). The costs spent diagnosing and treating AAT were moderate here. Conclusions: Understanding how cattle-owners are affected by AAT and their efforts to manage the disease is critical to the design of suitable locally-adapted control programmes. It is expected that the results could inform priority setting and the development of tailored recommendations for AAT control strategies

    Optimal strategies for controlling riverine tsetse flies using targets: a modelling study

    Get PDF
    Background: Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats. Methodology/Principal Findings: A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either selfsustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining. Conclusion/Significance: Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested

    Tsetse Salivary Gland Hypertrophy Virus: Hope or Hindrance for Tsetse Control?

    Get PDF
    Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed

    Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tsetse flies and trypanosomiasis are among several factors that constrain livestock development in Tanzania. Over the years Rufiji District was excluded from livestock production owing to tsetse fly infestation, however, a few years ago there was an influx of livestock following evictions aimed at conserving the Usangu wetlands.</p> <p>Methods</p> <p>A study was conducted to determine the efficiency of available traps for catching tsetse flies, <it>Glossina </it>species infesting the area, their infection rates and <it>Trypanosoma </it>species circulating in the area. Trapping was conducted during the semi dry season for a total of 30 days (ten days each month) during the onset of the dry season of May - July 2009. Harvested flies after every 24 hours were dissected and examined under a light microscope for trypanosome infections and whole fly DNA was extracted from 82 flies and analyzed for trypanosomes by polymerase chain reaction (PCR) using different sets of primers.</p> <p>Results</p> <p>The proportions of total tsetse catches per trap were in the following decreasing order S3 (33%), H-Trap (27%), Pyramidal (19%), sticky panel (11%) and biconical trap (10%). Of the 1200 trapped flies, 75.6% were identified as <it>Glossina pallidipes</it>, 11.7% <it>as G. brevipalpis</it>, 9.6% as <it>G. austeni </it>and 3.0% <it>G. morsitans morsitans</it>. Dissections revealed the overall infection rate of 6.6% (13/197). Whole DNA was extracted from 82 tsetse flies and the prevalence of trypanosomes circulating in the area in descending order was 92.7% (76/82) for <it>T. simiae</it>; 70.7% (58/82) for <it>T. brucei </it>types; 48.8% (40/82) for the <it>T. vivax </it>types and 32.9% (27/82) for the <it>T. congolense </it>types as determined by PCR. All trypanosome types were found in all tsetse species analysed except for the <it>T. congolense </it>types, which were absent in <it>G. m. morsitans</it>. None of the <it>T. brucei </it>positive samples contained human infective trypanosomes by SRA - PCR test</p> <p>Conclusion</p> <p>All tsetse species found in Rufiji are biologically important in the transmission of animal trypanosomiasis and the absence of <it>T. congolense </it>in <it>G. m. morsitans </it>could be a matter of chance only. Therefore, plans for control should consider all tsetse species.</p

    The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis

    Get PDF
    BACKGROUND: Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. METHODS: We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. RESULTS: We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. CONCLUSION: Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts
    corecore