60 research outputs found

    People, pollution and pathogens – Global change impacts in mountain freshwater ecosystems

    Get PDF
    Mountain catchments provide for the livelihood of more than half of humankind, and have become a key destination for tourist and recreation activities globally. Mountain ecosystems are generally considered to be less complex and less species diverse due to the harsh environmental conditions. As such, they are also more sensitive to the various impacts of the Anthropocene. For this reason,mountain regions may serve as sentinels of change and provide ideal ecosystems for studying climate and global change impacts on biodiversity. We here review different facets of anthropogenic impacts on mountain freshwater ecosystems. We put particular focus on micropollutants and their distribution and redistribution due to hydrological extremes, their direct influence on water quality and their indirect influence on ecosystem health via changes of freshwater species and their interactions. We show that those changes may drive pathogen establishment in new environments with harmful consequences for freshwater species, but also for the human population. Based on the reviewed literature, we recommend reconstructing the recent past of anthropogenic impact through sediment analyses, to focus efforts on small, but highly productive waterbodies, and to collect data on the occurrence and variability of microorganisms, biofilms, plankton species and key species, such as amphibians due to their bioindicator value for ecosystem health and water quality. The newly gained knowledge can then be used to develop a comprehensive framework of indicators to robustly inform policy and decision making on current and future risks for ecosystem health and human well-being

    It's not easy being green

    No full text

    Data from: Deconstructing the landscape of fear in stable multi-species societies

    No full text
    Animal distributions are influenced by variation in predation risk in space, which has been described as the “landscape of fear.” Many studies suggest animals also reduce predation risk by eavesdropping on heterospecific alarm calls, allowing them to occupy otherwise risky habitats. One unexplored area of study is understanding how different species’ alarms vary in quality, and how this variation is distributed in the landscape. We tested this phenomenon in a unique system of avian mixed species flocks in Amazonian rainforests: flock mates (eavesdropping species) strongly associate with alarm-calling antshrikes (genus Thamnomanes), which act as sentinel species. Up to 70 species join these flocks, presumably following antshrike behavioral cues. Since flocks in this region of the Amazon are exclusively led by a single antshrike species, this provides a unique natural system to compare differences in sentinel quality between flocks. We simulated predation threat by flying three species of live trained raptors (predators) towards flocks to compare sentinel probability to (1) produce alarm calls, and (2) encode information about magnitude and type of threat within such alarm calls. Our field experiments show significant differences in the probability of different sentinel species to produce alarm calls and distinguish predators. This variation may have important fitness consequences and shape the “landscape of fear” for eavesdropping species

    Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow-legged frog

    No full text
    The mountain yellow-legged frog Rana muscosa sensu lato, once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae, in the northern and central Sierra Nevada, and R. muscosa, in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899-1994) localities from museum collections show that 93.3% (n=146) of R. sierrae populations and 95.2% (n=79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges

    Reversing introduced species effects: Experimental removal of introduced fish leads to rapid recovery of a declining frog

    No full text
    Amphibian population declines and extinctions are occurring even in the world's least impacted areas. The introduction and spread of nonnative predators is one of many proposed causes of amphibian declines. Correlational studies have shown a negative relationship between introduced fishes and declining amphibians, but little direct experimental evidence is available. This study experimentally manipulated the presence and absence of widely introduced salmonids rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) to test the hypothesis that their introduction has contributed to the decline of the mountain yellow-legged frog (Rana muscosa). From 1996 to 2003, the introduced trout were removed from 5 lakes in a remote protected area of the Sierra Nevada, and 16 nearby lakes were used as controls, 8 with introduced trout and 8 without. To determine the vulnerable life stage, rainbow trout were placed in cages in three lakes containing amphibians. Removal of introduced trout resulted in rapid recovery of frog populations, and, in the caging experiment, tadpoles were found to be vulnerable to trout predation. Together, these experiments illustrate that introduced trout are effective predators on R. muscosa tadpoles and suggest (i) that the introduction of trout is the most likely mechanism responsible for the decline of this mountain frog and (ii) that these negative effects can be reversed

    Widespread Elevational Occurrence of Antifungal Bacteria in Andean Amphibians Decimated by Disease: A Complex Role for Skin Symbionts in Defense Against Chytridiomycosis

    No full text
    Emerging infectious disease is a growing threat to global health, and recent discoveries reveal that the microbiota dwelling on and within hosts can play an important role in health and disease. To understand the capacity of skin bacteria to protect amphibian hosts from the fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), we isolated 192 bacterial morphotypes from the skin of 28 host species of frogs (families Bufonidae, Centrolenidae, Hemiphractidae, Hylidae, Leptodactylidae, Strabomantidae, and Telmatobiidae) collected from the eastern slopes of the Peruvian Andes (540–3,865 m a.s.l.) in the Kosñipata Valley near Manu National Park, a site where we previously documented the collapse of montane frog communities following chytridiomycosis epizootics. We obtained isolates through agar culture from skin swabs of wild frogs, and identified bacterial isolates by comparing 16S rRNA sequences against the GenBank database using BLAST. We identified 178 bacterial strains of 38 genera, including 59 bacterial species not previously reported from any amphibian host. The most common bacterial isolates were species of Pseudomonas, Paenibacillus, Chryseobacterium, Comamonas, Sphingobacterium, and Stenotrophomonas. We assayed the anti-fungal abilities of 133 bacterial isolates from 26 frog species. To test whether cutaneous bacteria might inhibit growth of the fungal pathogen, we used a local Bd strain isolated from the mouthparts of stream-dwelling tadpoles (Hypsiboas gladiator, Hylidae). We quantified Bd-inhibition in vitro with co-culture assays. We found 20 bacterial isolates that inhibited Bd growth, including three isolates not previously known for such inhibitory abilities. Anti-Bd isolates occurred on aquatic and terrestrial breeding frogs across a wide range of elevations (560–3,695 m a.s.l.). The inhibitory ability of anti-Bd isolates varied considerably. The proportion of anti-Bd isolates was lowest at mid-elevations (6%), where amphibian declines have been steepest, and among hosts that are highly susceptible to chytridiomycosis (0–14%). Among non-susceptible species, two had the highest proportion of anti-Bd isolates (40 and 45%), but one common and non-susceptible species had a low proportion (13%). In conclusion, we show that anti-Bd bacteria are widely distributed elevationally and phylogenetically across frog species that have persisted in a region where chytridiomycosis emerged, caused a devastating epizootic and continues to infect amphibians

    Canopy Cover and Canopy Height

    No full text
    Canopy Cover and Height Data for forest habitat sampled within each flock for both flock type

    Are we in the midst of the sixth mass extinction? A view from the world of amphibians

    No full text
    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction
    • …
    corecore