50 research outputs found
A geothermal aquifer in the dilation zones on the southern margin of the Dublin Basin
This is the author accepted manuscript. the final version is available from Oxford University Press via the DOI in this recordWe present modelling of the geophysical data from the Newcastle area, west of Dublin, Ireland within the framework of the IRETHERM project. IRETHERM's overarching objective was to facilitate a more thorough strategic understanding of Ireland's geothermal energy potential through integrated modelling of new and existing geophysical, geochemical and geological data. The Newcastle area, one of the target localities, is situated at the southern margin of the Dublin Basin, close to the largest conurbation on the island of Ireland in the City of Dublin and surrounds. As part of IRETHERM, magnetotelluric (MT) soundings were carried out in the highly urbanized Dublin suburb in 2011 and 2012, and a description of MT data acquisition, processing methods, multi-dimensional geoelectrical models and porosity modelling with other geophysical data are presented. The MT time series were heavily noise-contaminated and distorted due to electromagnetic noise from nearby industry and Dublin City tram/railway systems. Time series processing was performed using several modern robust codes to obtain reasonably reliable and interpretable MT impedance and geomagnetic transfer function ‘tipper’ estimates at most of the survey locations. The most ‘quiet’ 3-hour subsets of data during the night time, when the DC ‘LUAS’ tram system was not operating, were used in multi-site and multivariate processing. The final 2-D models underwent examination using a stability technique, and the final two 2-D profiles, with reliability estimations expressed through conductance and resistivity, were derived. In the final stage of this study, 3-D modelling of all magnetotelluric data in the Newcastle area was also undertaken. Comparison of the MT models and their interpretation with existing seismic profiles in the area reveals that the Blackrock to Newcastle Fault (BNF) zone is visible in the models as a conductive feature down to depths of 4 km. The investigated area below Newcastle can be divided into two domains of different depths, formed as depth zones. The first zone, from the surface down to 1–2 km, is dominated by NE-SW oriented conductors connected with shallow faults or folds probably filled with less saline waters. The conductors are also crossing the surface trace of the BNF. The second depth domain can be identified from depths of 2 km to 4 km, where structures are oriented along the BNF and the observed conductivity is lower. The deeper conductive layers are interpreted as geothermal-fluid-bearing rocks. Porosity and permeability estimations from the lithological borehole logs indicate the geothermal potential of the bedrock, to deliver warm water to the surface. The fluid permeability estimation, based on Archie's law for porous structures and synthetic studies of fractured zones, suggests a permeability in the range 100 mD–100 D in the study area, which is prospective for geothermal energy exploitation.Science Foundation Ireland (SFI)Slovak Academy of Sciences (SAS)European Union FP7APVVSlovak Grant Agency VEG
Integrated geophysical-petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data
We undertake a petrologically driven approach to jointly model magnetotelluric (MT) and seismic surface wave dispersion (SW) data from central Tibet, constrained by topographic height. The approach derives realistic temperature and pressure distributions within the upper mantle and characterizes mineral assemblages of given bulk chemical compositions as well as water content. This allows us to define a bulk geophysical model of the upper mantle based on laboratory and xenolith data for the most relevant mantle mineral assemblages and to derive corresponding predicted geophysical observables. One-dimensional deep resistivity models were derived for two groups of MT stations. One group, located in the Lhasa Terrane, shows the existence of an electrically conductive upper mantle layer and shallower conductive upper mantle layer for the other group, located in the Qiangtang Terrane. The subsequent one-dimensional integrated petrological-geophysical modeling suggests a lithosphere-asthenosphere boundary (LAB) at a depth of 80¿120 km with a dry lithosphere for the Qiangtang Terrane. In contrast, for the Lhasa Terrane the LAB is located at about 180 km but the presence of a small amount of water in the lithospheric mantle (<0.02 wt%) is required to fit the longest period MT responses. Our results suggest two different lithospheric configurations beneath the southern and central Tibetan Plateau. The model for the Lhasa Terrane implies underthrusting of a moderately wet Indian plate. The model for the Qiangtang Terrane shows relatively thick and conductive crust and implies thin and dry Tibetan lithosphere.Peer Reviewe
Constraints on the evolution of crustal flow beneath Northern Tibet
Crustal flow is an important tectonic process active in continent‐continent collisions and which may be significant in the development of convergent plate boundaries. In this study, the results from multidimensional electrical conductivity modeling have been combined with laboratory studies of the rheology of partially molten rocks to characterize the rheological behavior of the middle‐to‐lower crust of both the Songpan‐Ganzi and Kunlun terranes in the northern Tibetan Plateau. Two different methods are adopted to develop constraints on melt fraction, temperature, and crustal flow velocity in the study area. The estimates of these parameters are then used to evaluate whether crustal flow can occur on the northern margin of the Tibetan plateau. In the Songpan‐Ganzi crust, all conditions are satisfied for topography‐driven channel flow to be dominant, with partial melt not being required for flow at temperature above 1000°C. Further north, the Kunlun fault defines the southern boundary of a transition zone between the Tibetan plateau and the Qaidam basin. Constrained by the estimated melt fractions, it is shown that channel injection across the fault requires temperatures close to 900°C. The composition of igneous rocks found at the surface confirm those conditions are met for the southern Kunlun ranges. To the north, the Qaidam basin is characterized by colder crust that may reflect an earlier stage in the channel injection process. In the study area, at least 10% of the eastward directed Tibetan crustal flow could be deflected northward across the Kunlun Fault and injected into the transition zone defining the northern margin of the Tibetan plateau
Northward channel flow in northern Tibet revealed from 3D magnetotelluric modelling
The Kunlun fault defines one of the major northern tectonic boundaries of the Tibetan plateau. Previous geophysical studies have detected a major change in rheology across this boundary, but it is not clear how this is related to models that have invoked crustal flow. The lithospheric resistivity structure of the Kunlun fault has been investigated by both the INDEPTH III and IV magnetotelluric (MT) transects. All the MT data were processed using modern statistically-robust methods, and have been analysed for directionality and dimensionality. In order to improve understanding of the anisotropic distribution of melt previously revealed by our remodelling of the INDEPTH III MT data, a variant approach on 3D inversion of 2D profiles was investigated to explore and improve lateral resolution. In addition to the apparent surficial deformation associated with the sinistral strike-slip Kunlun fault, the 3D modelling of the INDEPTH MT data reveals that complex deformation processes are occurring at mid-crustal depths in northern Tibet. The 3D MT inversion results, supported by synthetic modelling, particularly confirm and highlight the presence of separate north–south intrusions of conductive material crossing the Kunlun fault into the more resistive Kunlun–Qaidam block. These north–south intrusions are interpreted to be associated with the horizontal channel flow of partially molten Songpan–Ganzi crust into two (or more) separated channels moving northwards and crossing the surficial trace of the Kunlun fault at mid-to-lower crustal depths
Metabolic signatures of healthy lifestyle patterns and colorectal cancer risk in a European cohort
Background & Aims Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer cohort. Methods Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1–5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. Results Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29–0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50–0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86–1.00) overall. Signature associations were stronger in male compared with female participants. Conclusions Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer
Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing
Background: Epidemiological studies have demonstrated an association
between the degree of food processing in our diet and the risk of various
chronic diseases. Much of this evidence is based on the international Nova
classification system, which classifies food into four groups based on the type
of processing: (1) Unprocessed and minimally processed foods, (2) Processed
culinary ingredients, (3) Processed foods, and (4) “Ultra-processed” foods
(UPF). The ability of the Nova classification to accurately characterise the
degree of food processing across consumption patterns in various European
populations has not been investigated so far. Therefore, we applied the Nova
coding to data from the European Prospective Investigation into Cancer and
Nutrition (EPIC) in order to characterize the degree of food processing in our
diet across European populations with diverse cultural and socio-economic
backgrounds and to validate this Nova classification through comparison with
objective biomarker measurements.
Methods: After grouping foods in the EPIC dataset according to the Nova
classification, a total of 476,768 participants in the EPIC cohort (71.5% women;
mean age 51 [standard deviation (SD) 9.93]; median age 52 [percentile (p)25–
p75: 58–66] years) were included in the cross-sectional analysis that
characterised consumption patterns based on the Nova classification. The
consumption of food products classified as different Nova categories were
compared to relevant circulating biomarkers denoting food processing,
measured in various subsamples (N between 417 and 9,460) within the EPIC
cohort via (partial) correlation analyses (unadjusted and adjusted by sex,
age, BMI and country). These biomarkers included an industrial transfatty
acid (ITFA) isomer (elaidic acid; exogenous fatty acid generated during
oil hydrogenation and heating) and urinary 4-methyl syringol sulfate (an
indicator for the consumption of smoked food and a component of liquid
smoke used in UPF).
Results: Contributions of UPF intake to the overall diet in % grams/day varied
across countries from 7% (France) to 23% (Norway) and their contributions to
overall % energy intake from 16% (Spain and Italy) to >45% (in the UK and
Norway). Differences were also found between sociodemographic groups;
participants in the highest fourth of UPF consumption tended to be younger,
taller, less educated, current smokers, more physically active, have a higher
reported intake of energy and lower reported intake of alcohol. The UPF
pattern as defined based on the Nova classification (group 4;% kcal/day) was
positively associated with blood levels of industrial elaidic acid (r = 0.54) and
4-methyl syringol sulfate (r = 0.43). Associations for the other 3 Nova groups
with these food processing biomarkers were either inverse or non-significant
(e.g., for unprocessed and minimally processed foods these correlations were
–0.07 and –0.37 for elaidic acid and 4-methyl syringol sulfate, respectively).
Conclusion: These results, based on a large pan-European cohort,
demonstrate sociodemographic and geographical differences in the
consumption of UPF. Furthermore, these results suggest that the Nova
classification can accurately capture consumption of UPF, reflected by
stronger correlations with circulating levels of industrial elaidic acid and a
syringol metabolite compared to diets high in minimally processed foods
Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing
Background: Epidemiological studies have demonstrated an association between the degree of food processing in our diet and the risk of various chronic diseases. Much of this evidence is based on the international Nova classification system, which classifies food into four groups based on the type of processing: (1) Unprocessed and minimally processed foods, (2) Processed culinary ingredients, (3) Processed foods, and (4) Ultra-processed foods (UPF). The ability of the Nova classification to accurately characterise the degree of food processing across consumption patterns in various European populations has not been investigated so far. Therefore, we applied the Nova coding to data from the European Prospective Investigation into Cancer and Nutrition (EPIC) in order to characterize the degree of food processing in our diet across European populations with diverse cultural and socio-economic backgrounds and to validate this Nova classification through comparison with objective biomarker measurements. Methods: After grouping foods in the EPIC dataset according to the Nova classification, a total of 476,768 participants in the EPIC cohort (71.5% women; mean age 51 [standard deviation (SD) 9.93]; median age 52 [percentile (p)25-p75: 58-66] years) were included in the cross-sectional analysis that characterised consumption patterns based on the Nova classification. The consumption of food products classified as different Nova categories were compared to relevant circulating biomarkers denoting food processing, measured in various subsamples (N between 417 and 9,460) within the EPIC cohort via (partial) correlation analyses (unadjusted and adjusted by sex, age, BMI and country). These biomarkers included an industrial transfatty acid (ITFA) isomer (elaidic acid; exogenous fatty acid generated during oil hydrogenation and heating) and urinary 4-methyl syringol sulfate (an indicator for the consumption of smoked food and a component of liquid smoke used in UPF). Results: Contributions of UPF intake to the overall diet in % grams/day varied across countries from 7% (France) to 23% (Norway) and their contributions to overall % energy intake from 16% (Spain and Italy) to >45% (in the UK and Norway). Differences were also found between sociodemographic groups; participants in the highest fourth of UPF consumption tended to be younger, taller, less educated, current smokers, more physically active, have a higher reported intake of energy and lower reported intake of alcohol. The UPF pattern as defined based on the Nova classification (group 4;% kcal/day) was positively associated with blood levels of industrial elaidic acid (r = 0.54) and 4-methyl syringol sulfate (r = 0.43). Associations for the other 3 Nova groups with these food processing biomarkers were either inverse or non-significant (e.g., for unprocessed and minimally processed foods these correlations were -0.07 and -0.37 for elaidic acid and 4-methyl syringol sulfate, respectively). Conclusion: These results, based on a large pan-European cohort, demonstrate sociodemographic and geographical differences in the consumption of UPF. Furthermore, these results suggest that the Nova classification can accurately capture consumption of UPF, reflected by stronger correlations with circulating levels of industrial elaidic acid and a syringol metabolite compared to diets high in minimally processed foods
Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow
There is considerable controversy over the nature of geophysically recognized low-velocity-high-conductivity zones (LV-HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7-0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700-1,050°C and pressures of 0.5-1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15-50 km in areas where the LV-HCZs have been recognized. This provides new petrological evidence that the LV-HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau
Penetration of crustal melt beyond the Kunlun Fault into northern Tibet
The weak lithosphere of the Tibetan plateau is surrounded by rigid crustal blocks1 and the transition between these regimes plays a key role in the ongoing collision between India and Eurasia. Geophysical data2,3,4,5 and magmatic evidence6,7 support the notion that partial melt exists within the anomalously hot7,8 crust of northern Tibet. The Kunlun Fault, which accommodates the plateau’s eastward extrusion, has been identified as a significant rheological boundary4 between weak, warm Tibetan crust8 and the rigid eastern Kunlun–Qaidam block. Here we present reanalyses and remodelling of existing magnetotelluric data4, using an anisotropy code9 to obtain revised resistivity models. We find unequivocal evidence for anisotropy in conductivity at the northern edge of the Tibetan plateau. We interpret this anisotropy as the signature of intrusion of melt that penetrates north from the Tibetan plateau and weakens the crust beneath the Kunlun Shan. We suggest that our identification of a melt intrusion at the northern edge of the Tibetan plateau compromises the previous identification of the Kunlun Fault as an important rheological boundary. We conclude that the crustal melt penetration probably characterizes the growth of the plateau10 to the north, as well as accommodating the north–south crustal shortening in Tibet
Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing
BackgroundEpidemiological studies have demonstrated an association between the degree of food processing in our diet and the risk of various chronic diseases. Much of this evidence is based on the international Nova classification system, which classifies food into four groups based on the type of processing: (1) Unprocessed and minimally processed foods, (2) Processed culinary ingredients, (3) Processed foods, and (4) “Ultra-processed” foods (UPF). The ability of the Nova classification to accurately characterise the degree of food processing across consumption patterns in various European populations has not been investigated so far. Therefore, we applied the Nova coding to data from the European Prospective Investigation into Cancer and Nutrition (EPIC) in order to characterize the degree of food processing in our diet across European populations with diverse cultural and socio-economic backgrounds and to validate this Nova classification through comparison with objective biomarker measurements.MethodsAfter grouping foods in the EPIC dataset according to the Nova classification, a total of 476,768 participants in the EPIC cohort (71.5% women; mean age 51 [standard deviation (SD) 9.93]; median age 52 [percentile (p)25–p75: 58–66] years) were included in the cross-sectional analysis that characterised consumption patterns based on the Nova classification. The consumption of food products classified as different Nova categories were compared to relevant circulating biomarkers denoting food processing, measured in various subsamples (N between 417 and 9,460) within the EPIC cohort via (partial) correlation analyses (unadjusted and adjusted by sex, age, BMI and country). These biomarkers included an industrial transfatty acid (ITFA) isomer (elaidic acid; exogenous fatty acid generated during oil hydrogenation and heating) and urinary 4-methyl syringol sulfate (an indicator for the consumption of smoked food and a component of liquid smoke used in UPF).ResultsContributions of UPF intake to the overall diet in % grams/day varied across countries from 7% (France) to 23% (Norway) and their contributions to overall % energy intake from 16% (Spain and Italy) to >45% (in the UK and Norway). Differences were also found between sociodemographic groups; participants in the highest fourth of UPF consumption tended to be younger, taller, less educated, current smokers, more physically active, have a higher reported intake of energy and lower reported intake of alcohol. The UPF pattern as defined based on the Nova classification (group 4;% kcal/day) was positively associated with blood levels of industrial elaidic acid (r = 0.54) and 4-methyl syringol sulfate (r = 0.43). Associations for the other 3 Nova groups with these food processing biomarkers were either inverse or non-significant (e.g., for unprocessed and minimally processed foods these correlations were –0.07 and –0.37 for elaidic acid and 4-methyl syringol sulfate, respectively).ConclusionThese results, based on a large pan-European cohort, demonstrate sociodemographic and geographical differences in the consumption of UPF. Furthermore, these results suggest that the Nova classification can accurately capture consumption of UPF, reflected by stronger correlations with circulating levels of industrial elaidic acid and a syringol metabolite compared to diets high in minimally processed foods