36 research outputs found

    Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon

    Get PDF
    The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si) and paracrystalline silicon (p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are found to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics calculations on a 216-atom model. The calculated decay rates for p-Si are similar to those of a-Si. No modes in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes with the largest (up to 59%) weight on the cluster decay primarily to two diffusons. The numerical results are discussed in relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62}, 8072 (2000)] that long vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Design, construction, and characterization of a compact DD neutron generator designed for 40Ar/39Ar geochronology

    Full text link
    A next-generation, high-flux DD neutron generator has been designed, commissioned, and characterized, and is now operational in a new facility at the University of California Berkeley. The generator, originally designed for 40Ar/39Ar dating of geological materials, has since served numerous additional applications, including medical isotope production studies, with others planned for the near future. In this work, we present an overview of the High Flux Neutron Generator (HFNG) which includes a variety of simulations, analytical models, and experimental validation of results. Extensive analysis was performed in order to characterize the neutron yield, flux, and energy distribution at specific locations where samples may be loaded for irradiation. A notable design feature of the HFNG is the possibility for sample irradiation internal to the cathode, just 8 mm away from the neutron production site, thus maximizing the neutron flux (n/cm2/s). The generator's maximum neutron flux at this irradiation position is 2.58e7 n/cm2/s +/- 5% (approximately 3e8 n/s total yield) as measured via activation of small natural indium foils. However, future development is aimed at achieving an order of magnitude increase in flux. Additionally, the deuterium ion beam optics were optimized by simulations for various extraction configurations in order to achieve a uniform neutron flux distribution and an acceptable heat load. Finally, experiments were performed in order to benchmark the modeling and characterization of the HFNG.Comment: 31 pages, 20 figure

    Context-dependent conservation responses to emerging wildlife diseases

    Get PDF
    Emerging infectious diseases pose an important threat to wildlife. While established protocols exist for combating outbreaks of human and agricultural pathogens, appropriate management actions before, during, and after the invasion of wildlife pathogens have not been developed. We describe stage-specific goals and management actions that minimize disease impacts on wildlife, and the research required to implement them. Before pathogen arrival, reducing the probability of introduction through quarantine and trade restrictions is key because prevention is more cost effective than subsequent responses. On the invasion front, the main goals are limiting pathogen spread and preventing establishment. In locations experiencing an epidemic, management should focus on reducing transmission and disease, and promoting the development of resistance or tolerance. Finally, if pathogen and host populations reach a stable stage, then recovery of host populations in the face of new threats is paramount. Successful management of wildlife disease requires risk-taking, rapid implementation, and an adaptive approach."Funding was provided by the US National Science Foundation (grants EF-0914866, DGE-0741448, DEB-1115069, DEB-1336290) and the National Institutes of Health (grant 1R010AI090159)."https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/14024

    Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates

    Get PDF
    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    The open abdomen in trauma and non-trauma patients: WSES guidelines

    Full text link

    Influence of Natural Reductants on the Abiotic Reduction of Pentachloronitrobenzene in Prairie Pothole Lakes

    Get PDF
    Nitroaromatic compounds such as pentachloronitrobenzene (C6Cl5NO2) were once widely used as fungicides and pesticides in the United States and some (trifluralin and pendamethilin) are still in circulation. These compounds can contaminate natural systems including surface waters and sediments through overland runoff. In this study, the abiotic reduction of PCNB was examined in controlled laboratory systems containing natural wetland pore waters collected from the Prairie Pothole Lakes (PPL) in North Dakota. The PPL region is dominated by agricultural land use, which can impact the water quality of the lakes due to overland runoff containing organic contaminates. High levels of dissolved organic matter (DOM) and possible reduced sulfur species in pore waters could make the PPL reactive towards organic contaminates entering the system. Reduction of pentachloronitrobenzene to pentachloroaniline was observed by reaction with natural reductants in PPL pore waters. Iron analysis of the natural pore waters revealed a Fe(II) concentration of 14 ÎŒM, which makes it a relatively unimportant reductant. Even when compared to high concentration Fe(II)-only controls , natural pore waters degraded pentachloronitrobenzene at a faster rate. This indicates that the degradation in natural pore waters possibly occurred by reaction with other electron donors such as bisulfide or polysulfides in the presence of dissolved organic matter. Future work is necessary to elucidate the nature of the reductant and the precise role of DOM in the reduction of pentachloronitrobenzene.A two-year embargo was granted for this item
    corecore