5,395 research outputs found

    New Unity for Labor?

    Get PDF
    From the “Editor’s Introduction”: Within today’s AFL-CIO, a different set of frustrations with the bureaucratic structure and leadership is simmering. The relative lack of new organizing and the continuous toll of jurisdictional rivalries have produced a call for radical restructuring, or “New Unity Partnership” (NUP). As articulated by the leaders of some of the most powerful and dynamic of federation affiliates, including the Service Employees International Union’s president Andrew L. Stern, the promise (or threat, depending on one’s point of view) of the NUP deserves full scrutiny. To that end, we are pleased to present a forum organized by Ruth Milkman and Kim Voss of the University of California’s Institute for Labor and Employment, focused on the core concepts of the NUP proposal. The edited discussion features four labor policy experts: Stephen Lerner, director of the SEIU’s Building Services Division and a leading NUP draftsman; Kate Bronfenbrenner of the Cornell School of Industrial and Labor Relations; Dan Clawson, a sociologist at the University of Massachusetts, Amherst; and Jane Slaughter, of Labor Notes

    Swift-BAT Survey of Galactic Sources: Catalog and Properties of the populations

    Full text link
    We study the populations of X-ray sources in the Milky Way in the 15-55 keV band using a deep survey with the BAT instrument aboard the Swift observatory. We present the logN-logS distributions of the various source types and we analyze their variability and spectra. For the low-mass X-ray binaries (LMXBs) and the high-mass X-ray binaries (HMXBs) we derive the luminosity functions to a limiting luminosity of L_X~7 times10^{34} erg s/s. Our results confirm the previously found flattening of the LMXB luminosity function below a luminosity of L_X~10^{37} erg s/s. The luminosity function of the HMXBs is found to be significantly flatter in the 15-55 keV band than in the 2-10 keV band. From the luminosity functions we estimate the ratios of the hard X-ray luminosity from HMXBs to the star-formation rate, and the LMXB luminosity to the stellar mass. We use these to estimate the X-ray emissivity in the local universe from X-ray binaries and show that it constitutes only a small fraction of the hard X-ray background.Comment: 21 pages, accepted by Ap

    A statistical test of emission from unresolved point sources

    Full text link
    We describe a simple test of the spatial uniformity of an ensemble of discrete events. Given an estimate for the point source luminosity function and an instrumental point spread function (PSF), a robust upper bound on the fractional point source contribution to a diffuse signal can be found. We verify with Monte Carlo tests that the statistic has advantages over the two-point correlation function for this purpose, and derive analytic estimates of the statistic's mean and variance as a function of the point source contribution. As a case study, we apply this statistic to recent gamma-ray data from the Fermi Large Area Telescope (LAT), and demonstrate that at energies above 10 GeV, the contribution of unresolved point sources to the diffuse emission is small in the region relevant for study of the WMAP Haze.Comment: 11 pages, 7 figures. Final version, accepted by Mon. Not. R. Astron. Soc. The definitive version is available at www.blackwell-synergy.com

    Why Lead Labor?: Projects and Pathways in California Unions, 1984-2001

    Get PDF
    This paper explores how union leadership has developed over the last 20 years. While other studies have focused on the careers of top leaders or new recruits, we examine the careers of rising leaders over time. Finding that demographics is not enough to account for their career paths, we attend to the ways these leaders articulate their motivations, goals, and means of achieving them—what we call their “projects.” Projects—and how they change over time—help us explain not only why they joined unions, but why some stayed and others left

    Metallicity Effect on LMXB Formation in Globular Clusters

    Get PDF
    We present comprehensive observational results of the metallicity effect on the fraction of globular clusters (GC) that contain low-mass X-ray binaries (LMXB), by utilizing all available data obtained with Chandra for LMXBs and HST ACS for GCs. Our primary sample consists of old elliptical galaxies selected from the ACS Virgo and Fornax surveys. To improve statistics at both the lowest and highest X-ray luminosity, we also use previously reported results from other galaxies. It is well known that the LMXB fraction is considerably higher in red, metal-rich, than in blue, metal-poor GCs. In this paper, we test whether this metallicity effect is X-ray luminosity-dependent, and find that the effect holds uniformly in a wide luminosity range. This result is statistically significant (at >= 3 sigma) in LMXBs with luminosities in the range LX = 2 x 10^37 - 5 x 10^38 erg s-1, where the ratio of LMXB fractions in metal-rich to metal-poor GCs is R = 3.4 +- 0.5. A similar ratio is also found at lower (down to 10^36 erg s-1) and higher luminosities (up to the ULX regime), but with less significance (~2 sigma confidence). Because different types of LMXBs dominate in different luminosities, our finding requires a new explanation for the metallicity effect in dynamically formed LMXBs. We confirm that the metallicity effect is not affected by other factors such as stellar age, GC mass, stellar encounter rate, and galacto-centric distance.Comment: 21 pages, 5 figures, accepted in Ap

    Anticipated synchronization in coupled chaotic maps with delays

    Full text link
    We study the synchronization of two chaotic maps with unidirectional (master-slave) coupling. Both maps have an intrinsic delay n1n_1, and coupling acts with a delay n2n_2. Depending on the sign of the difference n1−n2n_1-n_2, the slave map can synchronize to a future or a past state of the master system. The stability properties of the synchronized state are studied analytically, and we find that they are independent of the coupling delay n2n_2. These results are compared with numerical simulations of a delayed map that arises from discretization of the Ikeda delay-differential equation. We show that the critical value of the coupling strength above which synchronization is stable becomes independent of the delay n1n_1 for large delays.Comment: 10 pages, 4 figure

    Discontinuities in self-affine functions lead to multiaffinity

    Full text link

    Dependence of the LMXB population on stellar age

    Full text link
    We investigate the dependence of the low-mass X-ray binary (LMXB) population in early-type galaxies on stellar age, by selecting 20 massive nearby early-type galaxies from the Chandra archive occupying a relatively narrow range of masses and spanning a broad range of ages, from 1.6 Gyr to more than 10 Gyrs, with the median value of 6 Gyrs. With the ~ 2000 X-ray point sources detected in total, we correlated the specific number of LMXBs in each galaxy with its stellar age and globular cluster (GC) content. We found a correlation between the LMXB population and stellar age: older galaxies tend to possess about ~50% more LMXBs (per unit stellar mass) than the younger ones. The interpretation of this dependence is complicated by large scatter and a rather strong correlation between stellar age and GC content of galaxies in our sample. We present evidence suggesting that the more important factor may be the evolution of the LMXB population with time. Its effect is further amplified by the larger GC content of older galaxies and correspondingly, the larger numbers of dynamically formed binaries in them. We also found clear evolution of the X-ray luminosity function (XLF) with age, that younger galaxies have more bright sources and fewer faint sources per unit stellar mass. The XLF of LMXBs in younger galaxies appears to extend significantly beyond E39 erg/s. Such bright sources seem to be less frequent in older galaxies. We found that 6 out of ~ 12 (ultra-) luminous sources are located in GCs.Comment: 13 pages, 8 figures, accepted by A&A on 03/08/201

    Multiorbital tunneling ionization of the CO molecule

    Full text link
    We coincidently measure the molecular frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review Letter
    • 

    corecore