49 research outputs found

    Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation

    Get PDF
    Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo . However, in two‐dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more‐accurate and relevant long‐term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly‐l ‐lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down‐regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more‐efficient differentiation protocols for stem‐cell‐derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. Conclusion: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro

    Physical Activity Characteristics across GOLD Quadrants Depend on the Questionnaire Used

    Get PDF
    BACKGROUND:The GOLD multidimensional classification of COPD severity combines the exacerbation risk with the symptom experience, for which 3 different questionnaires are permitted. This study investigated differences in physical activity (PA) in the different GOLD quadrants and patient's distribution in relation to the questionnaire used. METHODS:136 COPD patients (58±21% FEV1 predicted, 34F/102M) completed COPD assessment test (CAT), clinical COPD questionnaire (CCQ) and modified Medical Research Council (mMRC) questionnaire. Exacerbation history, spirometry and 6MWD were collected. PA was objectively measured for 2 periods of 1 week, 6 months apart, in 5 European centres; to minimise seasonal and clinical variation the average of these two periods was used for analysis. RESULTS:GOLD quadrants C+D had reduced PA compared with A+B (3824 [2976] vs. 5508 [4671] steps.d-1, p<0.0001). The choice of questionnaire yielded different patient distributions (agreement mMRC-CAT Îș = 0.57; CCQ-mMRC Îș = 0.71; CCQ-CAT Îș = 0.72) with different clinical characteristics. PA was notably lower in patients with an mMRC score ≄2 (3430 [2537] vs. 5443 [3776] steps.d-1, p <0.001) in both the low and high risk quadrants. CONCLUSIONS:Using different questionnaires changes the patient distribution and results in different clinical characteristics. Therefore, standardization of the questionnaire used for classification is critical to allow comparison of different studies using this as an entry criterion. CLINICAL TRIAL REGISTRATION:ClinicalTrials.gov NCT01388218

    Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models

    Get PDF
    BACKGROUND: Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. METHODS: Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m(3), 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. RESULTS: An elevated concentration of Zn(2+) was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. CONCLUSIONS: Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post exposure played an important role in the toxicity of ZnO NPs. Exposure for 13 wks with a cumulative dose of 10.9 mg/kg yielded increased lung cellularity, but other markers of toxicity did not differ from sham-exposed animals, leading to the conclusion that ZnO NPs have low sub-chronic toxicity by the inhalation route

    Facilitators and barriers to physical activity following pulmonary rehabilitation in COPD: a systematic review of qualitative studies

    Get PDF
    Pulmonary rehabilitation has short-term benefits on dyspnea, exercise capacity and quality of life in COPD, but evidence suggests these do not always translate to increased daily physical activity on a patient level. This is attributed to a limited understanding of the determinants of physical activity maintenance following pulmonary rehabilitation. This systematic review of qualitative research was conducted to understand COPD patients’ perceived facilitators and barriers to physical activity following pulmonary rehabilitation. Electronic databases of published data, non-published data, and trial registers were searched to identify qualitative studies (interviews, focus groups) reporting the facilitators and barriers to physical activity following pulmonary rehabilitation for people with COPD. Thematic synthesis of qualitative data was adopted involving line-by-line coding of the findings of the included studies, development of descriptive themes, and generation of analytical themes. Fourteen studies including 167 COPD patients met the inclusion criteria. Seven sub-themes were identified as influential to physical activity following pulmonary rehabilitation. These included: intentions, self-efficacy, feedback of capabilities and improvements, relationship with health care professionals, peer interaction, opportunities following pulmonary rehabilitation and routine. These encapsulated the facilitators and barriers to physical activity following pulmonary rehabilitation and were identified as sub-themes within the three analytical themes, which were beliefs, social support, and the environment. The findings highlight the challenge of promoting physical activity following pulmonary rehabilitation in COPD and provide complementary evidence to aid evaluations of interventions already attempted in this area, but also adds insight into future development of interventions targeting physical activity maintenance in COPD

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Hypoglycemia prevention and user acceptance of an insulin pump system with predictive low glucose management

    Get PDF
    Background: The MiniMed 640G sensor-augmented insulin pump system (Medtronic, Inc., Northridge, CA) can automatically suspend insulin delivery in advance of predicted hypoglycemia and restart it upon recovery. The aims of this analysis were to determine the rate at which predicted hypoglycemia was avoided with this strategy, as well as to assess user acceptance of the system and its insulin management features. Subjects and Methods: Forty subjects with type 1 diabetes used the system for 4 weeks. We retrospectively evaluated performance of the system, using downloaded pump and sensor data, and evaluated user acceptance via questionnaires. Results: There were 2,322 suspend before low events (2.1 per subject-day). The mean (± SD) duration of pump suspension events was 56.4 ± 9.6 min, and the mean subsequent sensor glucose (SG) nadir was 71.8 ± 5.2 mg/dL. SG values following 1,930 (83.1%) of the predictive suspensions did not reach the preset low limit. Nadir SG values of ≀50 and ≀60 mg/dL were seen in 207 (8.9%) and 356 (15.3%) of the predictive suspensions, respectively. Blood glucose (BG) and SG values before and during the study were comparable (P > 0.05). The mean absolute relative difference between paired SG and BG values was 10.9 ± 13.8%. Subjects felt confident using the system, agreed that it helped protect them from hypoglycemia, and wished to continue using it. Conclusions: Automatic insulin pump suspension as implemented in the MiniMed 640G system can help patients avoid hypoglycemia, without significantly increasing hyperglycemia

    Help! een dove cliënt.

    No full text
    Geen samenvatting beschikbaa

    Efficacy of an mHealth intervention to stimulate physical activity in COPD patients after pulmonary rehabilitation

    Get PDF
    Physical inactivity in patients with chronic obstructive pulmonary disease (COPD) is associated with poor health status and increased disease burden. The present study aims to test the efficacy of a previously developed mobile (m)Health intervention to improve or maintain physical activity in patients with COPD after pulmonary rehabilitation.A randomised controlled trial was performed in 32 physiotherapy practices in the Netherlands. COPD patients were randomised into intervention or usual care groups. The intervention consisted of a smartphone application for the patients and a monitoring website for the physiotherapists. Measurements were performed at 0, 3, 6 and 12 months. Physical activity, functional exercise capacity, lung function, health-related quality of life and body mass index were assessed.157 patients started the study and 121 completed it. There were no significant positive effects of the intervention on physical activity (at 0 months: intervention 5824±3418 steps per weekday, usual care 5717±2870 steps per weekday; at 12 months: intervention 4819±2526 steps per weekday, usual care 4950±2634 steps per weekday; p=0.811) or on the secondary end-points. There was a significant decrease over time in physical activity (p<0.001), lung function (p<0.001) and mastery (p=0.017), but not in functional exercise capacity (p=0.585).Although functional exercise capacity did not deteriorate, our mHealth intervention did not improve or maintain physical activity in patients with COPD after a period of pulmonary rehabilitation
    corecore