6 research outputs found

    SecB is a bona fide generalized chaperone in Escherichia coli

    No full text
    It is known that the DnaK and Trigger Factor (TF) chaperones cooperate in the folding of newly synthesized cytosolic proteins in Escherichia coli. We recently showed that despite a very narrow temperature range of growth and high levels of aggregated cytosolic proteins, E. coli can tolerate deletion of both chaperones, suggesting that other chaperones might be involved in this process. Here, we show that the secretion-dedicated chaperone SecB efficiently suppresses both the temperature sensitivity and the aggregation-prone phenotypes of a strain lacking both TF and DnaK. SecB suppression is independent of a productive interaction with the SecA subunit of the translocon. Furthermore, in vitro cross-linking experiments demonstrate that SecB can interact both co- and posttranslationally with short nascent chains of both secretory and cytosolic proteins. Finally, we show that such cotranslational substrate recognition by SecB is greatly suppressed in the presence of ribosome-bound TF, but not by DnaK. Taken together, our data demonstrate that SecB acts as a bona fide generalized chaperone

    SecB-like chaperone controls a toxin–antitoxin stress-responsive system in Mycobacterium tuberculosis

    No full text
    A major step in the biogenesis of newly synthesized precursor proteins in bacteria is their targeting to the Sec translocon at the inner membrane. In Gram-negative bacteria, the chaperone SecB binds nonnative forms of precursors and specifically transfers them to the SecA motor component of the translocase, thus facilitating their export. The major human pathogen Mycobacterium tuberculosis is an unusual Gram-positive bacterium with a well-defined outer membrane and outer membrane proteins. Assistance to precursor proteins by chaperones in this bacterium remains largely unexplored. Here we show that the product of the previously uncharacterized Rv1957 gene of M. tuberculosis can substitute for SecB functions in Escherichia coli and prevent preprotein aggregation in vitro. Interestingly, in M. tuberculosis, Rv1957 is clustered with a functional stress-responsive higB-higA toxin–antitoxin (TA) locus of unknown function. Further in vivo experiments in E. coli and in Mycobacterium marinum strains that do not possess the TA-chaperone locus show that the severe toxicity of the toxin was entirely inhibited when the antitoxin and the chaperone were jointly expressed. We found that Rv1957 acts directly on the antitoxin by preventing its aggregation and protecting it from degradation. Taken together, our results show that the SecB-like chaperone Rv1957 specifically controls a stress-responsive TA system relevant for M. tuberculosis adaptive response

    Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli

    No full text
    Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30°C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon

    Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL

    Get PDF
    In a newly isolated temperature-sensitive lethal Escherichia coli mutant affecting the chaperonin GroEL, we observed wholesale aggregation of newly translated proteins. After temperature shift, transcription, translation, and growth slowed over two to three generations, accompanied by filamentation and accretion (in ≈2% of cells) of paracrystalline arrays containing mutant chaperonin complex. A biochemically isolated inclusion body fraction contained the collective of abundant proteins of the bacterial cytoplasm as determined by SDS/PAGE and proteolysis/MS analyses. Pulse–chase experiments revealed that newly made proteins, but not preexistent ones, were recruited to this insoluble fraction. Although aggregation of “stringent” GroEL/GroES-dependent substrates may secondarily produce an “avalanche” of aggregation, the observations raise the possibility, supported by in vitro refolding experiments, that the widespread aggregation reflects that GroEL function supports the proper folding of a majority of newly translated polypeptides, not just the limited number indicated by interaction studies and in vitro experiments
    corecore