60 research outputs found

    Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM

    Get PDF
    Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box–Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results

    Optimization of Activated Tungsten Inert Gas welding process parameters using heat transfer search algorithm: with experimental validation using case studies

    Get PDF
    The Activated Tungsten Inert Gas welding (A-TIG) technique is characterized by its capability to impart enhanced penetration in single pass welding. Weld bead shape achieved by A-TIG welding has a major part in deciding the final quality of the weld. Various machining variables influence the weld bead shape and hence an optimum combination of machining variables is of utmost importance. The current study has reported the optimization of machining variables of A-TIG welding technique by integrating Response Surface Methodology (RSM) with an innovative Heat Transfer Search (HTS) optimization algorithm, particularly for attaining full penetration in 6 mm thick carbon steels. Welding current, length of the arc and torch travel speed were selected as input process parameters, whereas penetration depth, depth-to-width ratio, heat input and width of the heat-affected zone were considered as output variables for the investigations. Using the experimental data, statistical models were generated for the response characteristics. Four different case studies, simulating the real-time fabrication problem, were considered and the optimization was carried out using HTS. Validation tests were also carried out for these case studies and 3D surface plots were generated to confirm the effectiveness of the HTS algorithm. It was found that the HTS algorithm effectively optimized the process parameters and negligible errors were observed when predicted and experimental values compared. HTS algorithm is a parameter-less optimization technique and hence it is easy to implement with higher effectiveness

    The Effect of Cooling Temperature on Microstructure and Mechanical Properties of Al 6061-T6 Aluminum Alloy during Submerged Friction Stir Welding

    Get PDF
    Submerged friction stir welding (SFSW) is a new modification of friction stir welding. In this paper, 6 mm thick 6061Al-T6 alloy plates were welded using the friction stir technique under normal air and submerged water conditions at 108 mm/min welding speeds and a rotational rate of 900 rpm. The cooling water temperature in SFSW varied at 0 °C, 35 °C, and 80 °C to clarify the effect of water temperature. The characteristic hourglass-shaped stir zone was observed in the macrostructure of all the samples. All the samples exhibited defect-free joints. The results revealed that the finer grain size of 2.43 μm was at 0 °C. The macrostructure of SFSW joints separated into the shoulder-driven zone and pin-driven zone due to the low-temperature difference between the environment and water media and the high heat absorption capacity of the water, which caused a more substantial cooling rate during water-submerged welded joints. The microhardness distribution of all the joints showed typical “W” shape characteristics. The microhardness for all submerged samples was higher than in normal air conditions due to the higher thermal cycling effect in submerged conditions. Improved dynamic recrystallization in the joint welded at 80 °C resulted in the highest tensile strength (~249 MPa) and microhardness (~95 HV)

    Parametric Optimization and Effect of Nano-Graphene Mixed Dielectric Fluid on Performance of Wire Electrical Discharge Machining Process of Ni55.8Ti Shape Memory Alloy

    Get PDF
    In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions

    Experimental Investigations of Using Aluminum Oxide (Al2O3) and Nano-Graphene Powder in the Electrical Discharge Machining of Titanium Alloy

    Get PDF
    In the present study, a comprehensive parametric analysis was carried out using the electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input factors with output measures of surface roughness and material removal rate. The present study also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on output measures and surface defects. All the experimental runs were performed using Taguchi’s array at three levels. Analysis of variance was employed to study the statistical significance. Empirical relations were generated through Minitab. The regression model term was observed to be significant for both the output responses, which suggested that the generated regressions were adequate. Among the input factors, pulse-off time and current were found to have a vital role in the change in material removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-on time and pulse-off time were recognized to be influential parameters, while current was observed to be an insignificant factor. Teaching–learning-based optimization was used for the optimization of output responses. The influence of alumina and nano-graphene powder was investigated at optimal process parameters. The machining performance was significantly improved by using both powder-mixed electrical discharge machining as compared to the conventional method. Due to the higher conductivity of nano-graphene powder, it showed a larger improvement as compared to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact of alumina and graphene powder on surface morphology. The machined surface obtained for the conventional process depicted more surface defects than the powder-mixed process, which is key in aeronautical applications.This research received some help from the Basque government through University research groups, grant IT1573-22. Authors work in cooperation under a common agreement in the field of EDM

    Multi-Response Optimization of WEDM Process Parameters for Machining of Superelastic Nitinol Shape-Memory Alloy Using a Heat-Transfer Search Algorithm

    Get PDF
    Nitinol, a shape-memory alloy (SMA), is gaining popularity for use in various applications. Machining of these SMAs poses a challenge during conventional machining. Henceforth, in the current study, the wire-electric discharge process has been attempted to machine nickel-titanium (Ni55.8Ti) super-elastic SMA. Furthermore, to render the process viable for industry, a systematic approach comprising response surface methodology (RSM) and a heat-transfer search (HTS) algorithm has been strategized for optimization of process parameters. Pulse-on time, pulse-off time and current were considered as input process parameters, whereas material removal rate (MRR), surface roughness, and micro-hardness were considered as output responses. Residual plots were generated to check the robustness of analysis of variance (ANOVA) results and generated mathematical models. A multi-objective HTS algorithm was executed for generating 2-D and 3-D Pareto optimal points indicating the non-dominant feasible solutions. The proposed combined approach proved to be highly effective in predicting and optimizing the wire electrical discharge machining (WEDM) process parameters. Validation trials were carried out and the error between measured and predicted values was negligible. To ensure the existence of a shape-memory effect even after machining, a differential scanning calorimetry (DSC) test was carried out. The optimized parameters were found to machine the alloy appropriately with the intact shape memory effect

    Chemokine (C-C Motif) Receptor 2 Mediates Dendritic Cell Recruitment to the Human Colon but Is Not Responsible for Differences Observed in Dendritic Cell Subsets, Phenotype, and Function Between the Proximal and Distal Colon.

    Get PDF
    BACKGROUND & AIMS: Most knowledge about gastrointestinal (GI)-tract dendritic cells (DC) relies on murine studies where CD103+ DC specialize in generating immune tolerance with the functionality of CD11b+/- subsets being unclear. Information about human GI-DC is scarce, especially regarding regional specifications. Here, we characterized human DC properties throughout the human colon. METHODS: Paired proximal (right/ascending) and distal (left/descending) human colonic biopsies from 95 healthy subjects were taken; DC were assessed by flow cytometry and microbiota composition assessed by 16S rRNA gene sequencing. RESULTS: Colonic DC identified were myeloid (mDC, CD11c+CD123-) and further divided based on CD103 and SIRPα (human analog of murine CD11b) expression. CD103-SIRPα+ DC were the major population and with CD103+SIRPα+ DC were CD1c+ILT3+CCR2+ (although CCR2 was not expressed on all CD103+SIRPα+ DC). CD103+SIRPα- DC constituted a minor subset that were CD141+ILT3-CCR2-. Proximal colon samples had higher total DC counts and fewer CD103+SIRPα+ cells. Proximal colon DC were more mature than distal DC with higher stimulatory capacity for CD4+CD45RA+ T-cells. However, DC and DC-invoked T-cell expression of mucosal homing markers (β7, CCR9) was lower for proximal DC. CCR2 was expressed on circulating CD1c+, but not CD141+ mDC, and mediated DC recruitment by colonic culture supernatants in transwell assays. Proximal colon DC produced higher levels of cytokines. Mucosal microbiota profiling showed a lower microbiota load in the proximal colon, but with no differences in microbiota composition between compartments. CONCLUSIONS: Proximal colonic DC subsets differ from those in distal colon and are more mature. Targeted immunotherapy using DC in T-cell mediated GI tract inflammation may therefore need to reflect this immune compartmentalization

    Experimental investigations on microstructure and mechanical properties of wall structure of SS309L using wire-arc additive manufacturing

    No full text
    In present study, a wall structure of SS309L was constructed through Gas metal arc welding based Wire-arc additive manufacturing process. The wall structure of SS309L underwent investigation for microstructure and mechanical properties at three positions along the horizontal deposition direction. Mechanical assessments, including microhardness testing, impact testing, tensile testing, and fractography, were conducted at three positions of walls. Microstructure study has shown a fine granular structure in addition to colony of columnar dendrites in bottom section, a columnar dendrites in middle section, and a mix of dendritic structure with even coarser structures in top section. The mean microhardness values were observed to be 159 ± 4.21 HV, 162 ± 3.89 HV, and 168 ± 5.34 HV for the top, middle, and bottom sections, respectively. Results of impact testing for the wall structure indicated greater strength compared to wrought SS309L. The tensile strength of the built structure showed average values of yield strength, ultimate tensile strength, and elongation to be 409.33 ± 7.66 MPa, 556.66 ± 6.33 MPa, and 39.66 ± 2.33 %, respectively. In comparison, wrought 309 L steel typically exhibits tensile strengths in the range of 360–480 MPa for yield strength, 530–650 MPa for ultimate tensile strength, and 35–45 % elongation. Thus, the obtained tensile strength results for the wall structure fall within the range of tensile strength observed in wrought 309 L steel. Fractography of the tensile and impact specimens, as obtained through Scanning Electron Microscopy, revealed the superior ductility of the fabricated component. This study contributes valuable insights into the manufacturing of wall structure and their analysis regarding mechanical characteristics.CC-BY 4.0</p

    Effect of multi-walled structure on microstructure and mechanical properties of 1.25Cr-1.0Mo steel fabricated by GMAW-based WAAM using metal-cored wire

    No full text
    Wire-arc additive manufacturing (WAAM) offers multiple benefits, such as high metal deposition, low capital cost, suitable mechanical properties, and reasonable costs. In the present work, Gas metal arc welding (GMAW) based WAAM was employed to manufacture a multi-walled component of 1.25Cr-0.5Mo at optimized parameters using metal-cored wire. The fabricated multi-walled structure was observed with seamless fusion and free from disbonding. The fabricated multi-walled component was studied through microstructure investigations, mechanical properties such as microhardness (MH), tensile test, and impact test at various positions (top side, middle side, and bottom side) of the built structure. Microstructure results have shown a tempered martensite structure in the bottom zone with coarse grains and finer microstructures in the middle and top zones. MH values throughout the component were uniform and thus indicated a similar nature to the multi-walled component. A comparison of tensile properties was carried out among the results of metal-cored wires and multi-walled structures to check the internal eminence of the obtained component. For all sides of the multi-walled structure, all the tensile properties were found to be in the range values of 1.25Cr-0.5Mo metal-cored wire. The results of all three conditions for impact toughness showed far better strength than the requirement. Fracture surface morphologies of tensile and impact test parts showed the presence of large dimples with the homogenous distribution. Thus, all the obtained results have suggested the suitability of the GMAWAM process for the fabrication of a multi-walled structure of 1.25Cr-0.5Mo metal-cored wire for various industrial applications

    Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L

    No full text
    In the present study, the Gas metal arc welding (GMAW) based Wire-arc additive manufacturing (WAAM) process was used to fabricate a multi-layered structure at opti-mized process parameters on SS316L using metal wire of SS316L. The multi-layered structure’s microstructure, macrostructure, and mechanical properties (tensile test, impact test, microhardness, and fractography) were examined at three locations at the top, middle, and bottom sides of the structure. Macrostructure at different zones has confirmed an appropriate bonding between the two layers, complete fusion without oxidation, and free from defects and unwanted geometries. Microstructure results have observed a colony of columnar dendrites in the bottom zone, coarser grains with vertical growth along with the residual ferrite in the middle zone, and vertical dendritic structure with residual ferrite in skeletal shape in the top zone. Results of all tensile properties for top, middle and bottom zone developed by the WAAM process fall in the range values of wrought SS 316 L. The microhardness values were shown a consistent behavior across the built structure in all three zones. The obtained average value for the impact test has shown better strength than commercially used wrought SS 316 L. The results of fractured tensile and fracture impact test specimens revealed many dimples, which suggests a good ductility of the as -built structure. Thus, the obtained results have shown that the built structure using the GMAW-based WAAM process matches the standards for industrial applications. (C) 2022 The Author(s). Published by Elsevier B.V.The authors would like to thank ORSP, PDEU, for sponsoringthe research project in the SRP scheme via project number ORSP/R&amp;D/SRP/2021/010. Authors would also like toacknowledge project funded by Department of Science and Technology (DST), India (SR/FTP/ETA-19/08) for providing GMAW machining setupTThis is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</p
    corecore