99 research outputs found

    A Novel Technique for the In Vivo Imaging of Autoimmune Diabetes Development in the Pancreas by Two-Photon Microscopy

    Get PDF
    Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction

    Resolution of a chronic viral infection after interleukin-10 receptor blockade

    Get PDF
    A defining characteristic of persistent viral infections is the loss and functional inactivation of antiviral effector T cells, which prevents viral clearance. Interleukin-10 (IL-10) suppresses cellular immune responses by modulating the function of T cells and antigen-presenting cells. In this paper, we report that IL-10 production is drastically increased in mice persistently infected with lymphocytic choriomeningitis virus. In vivo blockade of the IL-10 receptor (IL-10R) with a neutralizing antibody resulted in rapid resolution of the persistent infection. IL-10 secretion was diminished and interferon γ production by antiviral CD8+ T cells was enhanced. In persistently infected mice, CD8α+ dendritic cell (DC) numbers declined early after infection, whereas CD8α− DC numbers were not affected. CD8α− DCs supported IL-10 production and subsequent dampening of antiviral T cell responses. Therapeutic IL-10R blockade broke the cycle of IL-10–mediated immune suppression, preventing IL-10 priming by CD8α− DCs and enhancing antiviral responses and thereby resolving infection without causing immunopathology

    Reduced Expression of IFIH1 Is Protective for Type 1 Diabetes

    Get PDF
    IFIH1 (interferon induced with helicase C domain 1), also known as MDA5 (melanoma differentiation-associated protein 5), is one of a family of intracellular proteins known to recognise viral RNA and mediate the innate immune response. IFIH1 is causal in type 1 diabetes based on the protective associations of four rare variants, where the derived alleles are predicted to reduce gene expression or function. Originally, however, T1D protection was mapped to the common IFIH1 nsSNP, rs1990760 or Thr946Ala. This common amino acid substitution does not cause a loss of function and evidence suggests the protective allele, Ala946, may mark a haplotype with reduced expression of IFIH1 in line with the protection conferred by the four rare loss of function alleles. We have performed allele specific expression analysis that supports this hypothesis: the T1D protective haplotype correlates with reduced IFIH1 transcription in interferon-β stimulated peripheral blood mononuclear cells (overall p = 0.012). In addition, we have used multiflow cytometry analysis and quantitative PCR assays to prove reduced expression of IFIH1 in individuals heterozygous for three of the T1D-associated rare alleles: a premature stop codon, rs35744605 (Glu627X) and predicted splice variants, rs35337543 (IVS8+1) and rs35732034 (IVS14+1). We also show that the nsSNP, Ile923V, does not alter pre-mRNA levels of IFIH1. These results confirm and extend the new autoimmune disease pathway of reduced IFIH1 expression and protein function protecting from T1D

    α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes.

    Get PDF
    Many patients with type 1 diabetes (T1D) have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia. Cell Rep 2018 Mar 6; 22(10):2667-2676

    The Role of TNF-α in Mice with Type 1- and 2- Diabetes

    Get PDF
    Background: Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling. Methodology and Principal Findings: To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-α\alpha) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues. In PLNs and fat, TNF-α\alpha interacted with 53% and 32% of genes, respectively, associated with reversal of diabetes by previous treatments and was thereby selected as a therapeutic target. Short-term anti-TNF-α\alpha treatment ablated a T cell-rich islet-invasive and beta cell-destructive process, thereby enhancing beta cell viability. Indeed anti-TNF-α\alpha treatment induces immune tolerance selective to syngeneic beta cells. In addition to these curative effects on T1D anti-TNF-e33254 treatment restored in vivo insulin signaling resulting in restoration of insulin sensitivity. Conclusions: In short, our molecular analysis suggested that PM and AAT both may act in part by quenching a detrimental TNF-α\alpha dependent effect in both fat and PLNs. Indeed, short-term anti-TNF-α\alpha mAb treatment restored enduring euglycemia, self-tolerance, and normal insulin signaling

    CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease

    Get PDF
    The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4+ T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b+CD11c−CD45HIGH monocytes/macrophages and CD11b+CD11c+CD45HIGH dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4+ and CD8+ T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD

    Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes

    Get PDF
    A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naïve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity

    CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing

    Get PDF
    CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses

    Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients

    Get PDF
    Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells
    corecore