92 research outputs found

    Validation of IFE-1.6 SCIAMACHY limb ozone profiles

    Get PDF
    International audienceThe IFE-1.6 scientific data set of SCIAMACHY limb ozone profiles is validated for the period August?December 2002. The data set provides ozone profiles over an altitude range of 15?45 km. The main uncertainty in the profiles is the imprecise knowledge of the pointing of the instrument, leading to retrieved profiles that are shifted in altitude direction. To obtain a first order correction for the pointing error and the remaining uncertainties, the retrieved profiles are compared to their a-priori value and ozone sondes based on absolute distance and equivalent latitude criteria. A vertical shift of the satellite profiles with 2 km downward is found to be an appropriate correction for the data set studied. A total root-mean-square difference between limb profiles and sondes of 10?15% remains for the stratospheric ozone profile after application of the correction. Small biases are left above and below the ozone maximum at mid latitudes, where the vertical gradients in the retrieved product are in general too strong

    Comparison of NLC particle sizes derived from SCIAMACHY/Envisat observations with ground-based LIDAR measurements at ALOMAR (69° N)

    Get PDF
    SCIAMACHY, the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY has provided measurements of limb-scattered solar radiation in the 220 nm to 2380 nm wavelength range since summer of 2002. Measurements in the UV spectral range are well suited for the retrieval of particle sizes of noctilucent clouds (NLCs) and have been used to compile the largest existing satellite data base of NLC particle sizes. This paper presents a comparison of SCIAMACHY NLC size retrievals with the extensive NLC particle size data set based on ground-based LIDAR measurements at the Arctic LIDAR Observatory for Middle Atmosphere Research (ALOMAR, 69° N, 16° E) for the Northern Hemisphere NLC seasons 2003 to 2007. Most of the presented SCIAMACHY NLC particle size retrievals are based on cylindrical particles and a Gaussian particle size distribution with a fixed width of 24 nm. If the differences in spatial as well as vertical resolution between SCIAMACHY and the ALOMAR LIDAR are taken into account, very good agreement is found. The mean particle size derived from SCIAMACHY limb observations for the ALOMAR overpasses in 2003 to 2007 is 56.2 nm with a standard deviation of 12.5 nm, and the LIDAR observations yield a value of 54.2 nm with a standard deviation of 17.4 nm

    Detection and mapping of polar stratospheric clouds using limb scattering observations

    Get PDF
    International audienceSatellite-based measurements of Visible/NIR limb-scattered solar radiation are well suited for the detection and mapping of polar stratospheric clouds (PSCs). This publication describes a method to detect PCSs from limb scattering observations with the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Space Agency's Envisat spacecraft. The method is based on a color-index approach and requires a priori knowledge of the stratospheric background aerosol loading in order to avoid false PSC identifications by stratospheric background aerosol. The method is applied to a sample data set including the 2003 PSC season in the Southern Hemisphere. The PSCs are correlated with coincident UKMO model temperature data, and with very few exceptions, the detected PSCs occur at temperatures below 195?198 K. Monthly averaged PSC descent rates are about 1.5 km/month for the ?50° S to ?75° S latitude range and assume a maximum between August and September with a value of about 2.5 km/month. The main cause of the PSC descent is the slow descent of the lower stratospheric temperature minimum

    The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption

    Get PDF
    This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)

    Harmonized Dataset of Ozone Profiles from Satellite Limb and Occultation Measurements

    Get PDF
    In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001-2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of similar to 1 km below 20 km and 2-3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi: 10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308

    The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption

    Get PDF
    This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)

    First Nearglobal Retrievals of OH Rotational Temperatures From Satellite-based Meinel Band Emission Measurements

    Get PDF
    For the first time near-global retrievals of mesopause OH rotational temperatures from satellite-borne Meinel band emission measurements are presented. The measurements of the OH (3-1) Meinel band near 1.5 micron were performed with the SCIAMACHY instrument on the European Space Agency’s environmental satellite Envisat. The derived OH (3-1) rotational temperatures are shown to be in reasonable agreement with the CIRA (1986) atmosphere temperatures for the seasons and latitudes considered. The derived temperatures are in good agreement with groundbased measurements of the OH rotational temperature performed with a CEDAR Mesospheric Temperature Mapper (MTM) at Maui, Hawaii (21N/204E), with the GRound based Infrared P-branch Spectrometer I (GRIPS-I) at Hohenpeißenberg (47N/11E) and with GRIPS-II at Wuppertal (51N/7E). The SCIAMACHY limb nighttime observations provide a unique data set of near-global OH rotational temperature to study seasonal and geographical variations, dynamical processes and possibly long-term temperature trends, if an extended data set becomes available in the future

    Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Get PDF
    Abstract. Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.We would like to thank the different agencies that support missions with instruments that measure stratospheric ozone profiles (ESA, NASA, NOAA, JAXA, NICT, CSA, SNSB, CNES, NSO, NIES, MOE, Eumetsat). We also would like to thank the different national and international agencies that fund groundbased measurements and several databases where ground-based measurements are stored and made accessible (NDACC, WOUDC, SHADOZ). The atmospheric chemistry experiment (ACE) is a Canadian-led mission mainly supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. SCIAMACHY is jointly funded by Germany, the Netherlands and Belgium. Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration. The IMK data analysis was co-funded by DLR under contract 50 EE 0901. Publication of this article was funded by the University of Colorado Boulder Libraries Open Access Fund and the SPARC-Office.This paper was originally published in Atmospheric Measurement Techiques, 7, 1395-1427, doi:10.5194/amt-7-1395-2014, 2014

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements
    • …
    corecore