2,031 research outputs found

    IPO-related organizational change and long-term performance

    Get PDF
    Mainstream literature on long-term performance of initial public offerings focuses on long-term underperformance. Because underperformance is an anomalous phenomenon, many authors search for explanations based on financial market imperfections. More recently, however, the attention shifts from underperformance to long-term performance in general. This induces the search for other than financial market imperfections in explaining under- or outperformance. This article presents the idea that in many companies the preparation for the IPO and the IPO itself may bring organizational change. It searches for IPO-related organizational change in The Netherlands with interviews of Dutch corporate officers. The research shows that an IPO primarily changes financial management and financial reporting, but that other types of organizational change may also be relevant. Moreover, long-term stock market performance was on average higher in companies where IPO-related organizational changes were reported than in companies where the changes were not reported.

    Persistent currents in n-fold twisted Moebius strips

    Full text link
    We investigate the influence of the topology on generic features of the persistent current in n-fold twisted Moebius strips formed of quasi one--dimensional mesoscopic rings, both for free electrons and in the weakly disordered regime. We find that there is no generic difference between the persistent current for untwisted rings and for Moebius strips with an arbitrary number of twists.Comment: 7 pages, 2 figure

    Asymptotic Capture-Number and Island-Size Distributions for One-Dimensional Irreversible Submonolayer Growth

    Full text link
    Using a set of evolution equations [J.G. Amar {\it et al}, Phys. Rev. Lett. {\bf 86}, 3092 (2001)] for the average gap-size between islands, we calculate analytically the asymptotic scaled capture-number distribution (CND) for one-dimensional irreversible submonolayer growth of point islands. The predicted asymptotic CND is in reasonably good agreement with kinetic Monte-Carlo (KMC) results and leads to a \textit{non-divergent asymptotic} scaled island-size distribution (ISD). We then show that a slight modification of our analytical form leads to an analytic expression for the asymptotic CND and a resulting asymptotic ISD which are in excellent agreement with KMC simulations. We also show that in the asymptotic limit the self-averaging property of the capture zones holds exactly while the asymptotic scaled gap distribution is equal to the scaled CND.Comment: 4 pages, 1 figure, submitted to Phys. Rev.

    Automated Classification of Stellar Spectra: Where Are We Now?

    Get PDF
    We briefly review the work of the past decade on automated classification of stellar spectra and discuss techniques which show par­ticular promise. Emphasis is placed on Artificial Neural Network and Principle Component Analysis based techniques, due both to our greater familiarity with these and to their rising popularity. As an example of the abilities of current techniques we report on our automated classification work based on the visual classifications of N. Houk (Michigan Spectral Catalogue, Vol. 1 - 4, 1975, 1978, 1982, 1988)

    Spin effects in the magneto-drag between double quantum wells

    Full text link
    We report on the selectivity to spin in a drag measurement. This selectivity to spin causes deep minima in the magneto-drag at odd fillingfactors for matched electron densities at magnetic fields and temperatures at which the bare spin energy is only one tenth of the temperature. For mismatched densities the selectivity causes a novel 1/B-periodic oscillation, such that negative minima in the drag are observed whenever the majority spins at the Fermi energies of the two-dimensional electron gasses (2DEGs) are anti-parallel, and positive maxima whenever the majority spins at the Fermi energies are parallel.Comment: 4 pages, 3 figure

    Field theoretical approach to non-local interactions: 1d electrons and fermionic impurities

    Get PDF
    We apply a recently proposed path-integral approach to non-local bosonization to a Thirring-like system modeling non-relativistic massless particles interacting with localized fermionic impurities. We consider forward scattering processes described by symmetric potentials including interactions between charge, current, spin and spin-current densities. In the general (spin-flipping) problem we obtain an effective action for the collective modes of the model at T = 0, containing WZW-type terms. When spin-flipping processes are disregarded the structure of the action is considerably simplified, allowing us to derive exact expressions for the dispersion relations of collective modes and two point fermionic correlation functions as functionals of the potentials. Finally, as an example, we compute the momentum distribution for the case in which electrons and impurities are coupled through spin and spin-current densities only. The formulae we get suggest that our formalism could be useful in order to seek for a mechanism able to restore Fermi liquid behavior.Comment: 27 pages, Latex file, no figure

    Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation

    Get PDF
    We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated in one direction. At low temperatures, as the density of carriers in the modulated layer is changed, we show that the transresistivity component in the direction of modulation can change its sign. We also give a physical explanation for this behavior.Comment: 4 pages, 4 figure
    corecore