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We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential
modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated
in one direction. At low temperatures, as the density of carriers in the modulated layer is changed, we show that
it is possible for the transresistivity component in the direction of modulation tochange its sign. We also give
a physical explanation for this behavior.

DOI: 10.1103/PhysRevB.66.201304 PACS number~s!: 73.23.2b, 73.50.2h, 73.61.2r

Throughout the past decade there has been a great deal of
experimental and theoretical activity in frictional drag in bi-
layer systems, following the seminal experiments by Gramila
et al.1 These drag experiments involved a double quantum-
well system where the layers are individually contacted by
ingenious fabrication techniques. The barrier between the
wells is made thick enough to suppress tunneling but thin
enough to allow significant interlayer interactions. An aver-
age current densityj1 is driven through layer 1 and circuit is
kept open in layer 2, so thatj250. The interlayer interaction
causes the electrons in layer 1 to drag along the electrons in
layer 2, and hence a counterbalancing electric fieldE2 forms
in layer 2 to maintain a zero netj2. The transresistivity ten-
sor rJ21, defined byE25rJ21j1, can be extracted experimen-
tally and can reveal important information about the proper-
ties of the effective interlayer interactions, the individual
layers and the coupled bilayer system.

Since the original work of Gramilaet al.,1 which was
done on a closely spaced electron-electron system at low
temperatures without an applied magnetic field, many varia-
tions on the theme of the original experiments have been
performed. For instance, drag has been measured in
electron-hole2 and hole-hole3 systems, in widely separated
layers,4,5 and in the presence of a perpendicular magnetic
field.3,6–8Very recently, low-density systems have been stud-
ied to probe the suggested metal-insulator phase transition in
strongly correlated disordered two-dimensional systems.9,10

Another modern trend is to examine mesoscopic effects in
Coulomb drag.11–13 In general, drag without an appliedB
field is reasonably well understood within the framework of
a standard weak-interlayer coupling theory.14–16 The theory
successfully accounts for several unusual features such as
large enhancements in the transresistivity~up to an order of
the magnitude; some intriguing discrepancies, however, do
persist for the most dilute systems studied10! due to intra-
layer correlations17 and plasmon mediated scattering.18,19On
the other hand, the understanding of magnetodrag~i.e., drag
in the presence of a perpendicularB field! in bilayer systems
is less complete, and several puzzling experimental results
remain unexplained. For instance, under certain circum-
stances, the diagonal terms in the magnetotransresistivity
(r21

xx and r21
yy) has been observed toreverse signwhen the

chemical potential is changed in one layer while being kept

fixed in the other.20 This sign reversal with changing chemi-
cal potential~which incidentally has not been observed at
B50) cannot be obtained from magnetodrag calculations us-
ing the self-consistent Born approximation,21,22 and despite
recent theoretical progress,23 a fully satisfactory explanation
of this phenomenon is not yet available.

In this paper, we suggest that a reversal of the sign of the
transresistivity is possible atB50 in bilayer systems that
have periodic potential modulations in the plane of the lay-
ers. The periodic potential modulation creates minibands,
and the charge carriers can evolve from electronlike to hole-
like behavior with a relatively small change in the density.
Furthermore, for systems that are modulated in one direction,
it is possible to observe anisotropic drag, implying that the
electric-field response in the drag layer is in a different di-
rection from that of the driving current. This demonstrates
the important role band structure plays in determining the
transresistivity of the system.24 We note that experiments on
two-dimensional electron gases with strong potential modu-
lations in one direction have already been reported in the
literature,25 and hence we believe that the theory described
below is amenable to experimental tests in near future.

To investigate drag in these modulated systems, we use
the Kubo formalism15,16 to calculate the transconductivity
tensorsJ21, which is related to the transresistivity byrJ215
2rJ22sJ21rJ11 in the weak-interlayer coupling limit. In this
method, the transconductivity is expressed as a current-
current correlation function, which can be calculated with
standard perturbation-theory techniques.

The Hamiltonian of the system isĤ5( i 51,2Ĥ i1Ĥ12,
whereĤ i is the Hamiltonian of layeri and Ĥ12 is the inter-
layer interaction term. We assumeĤ21 is due to Coulomb
interactions, so that Ĥ125A 21(n̂1(q)n̂2(2q)V12(q),
where n̂i(q) and V12(q) are the Fourier transforms of the
density operator and the interlayer Coulomb interaction, re-
spectively.

We define, within the Matsubara formalism,DW to be the
correlation function26

DW ~q,q8; ivn ,ivn8!52E
0

b

dtE
0

b

dt8eivnte2 ivn8t8

3^TtĴ~0!n̂~q,t!n̂~2q8,t8!&0 . ~1!

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 66, 201304~R! ~2002!

0163-1829/2002/66~20!/201304~4!/$20.00 ©2002 The American Physical Society66 201304-1



For systems that have a periodic potential modulation with
reciprocal vectorsG, only q2q85G terms are nonzero. Ex-
panding in powers ofV12, the first nonvanishing term for
s21 in the dc limit is the second-order term. We obtain

s21
dg5

e2

hA (
q

(
G1G2

V12~q!V12~2q1G1!dG1G2

3E
0

`dv

2p
D2

d~q,q1G2 ;v1 i01,v2 i01!

3D1
g~q,q1G1 ;v1 i01,v2 i01!@2]vnB~v!#.

~2!

Evaluation ofDW (q,q1G;v1 i01,v2 i01) is analogous
to Ref. 16. In this paper, we assume the system is in the weak
scattering limit,,@d,a (, is the impurity mean-free path,d
is the layer separation, anda is the modulation period!27

allowing us to ignore vertex corrections at the charge verti-
ces. Then, one obtains

DW ~q,q1G,v1 i01,v2 i01!

5
4p

A (
knn8

@vn8k1qt tr,n8~k1q!2vnkt tr,n~k!#

3@~nF~«nk!2nF~«nk2v!#d~«nk2«n8k1q2v!

3h~k1qn8,kn;q!h~kn,k1qn8;2q2G!. ~3!

Here, vnk is the band velocity,« is the energy,nF(«)
5$exp@b(«2m)#11%21 (m is the chemical potential!, t tr is
the transport time,h(k8n8,kn;q)5^k8n8uexp(2iq•r )ukn&
(n,n8 are the band indices!. The sJ21 obtained using Eq.~2!
and the weak scattering result Eq.~3! can, with the approxi-
mation h51, also be derived from the semiclassical Boltz-
mann equation.19

A complete calculation of drag, using Eq.~3! in Eq. ~2!, is
an arduous task, requiring a numerical evaluation of the band
structure~s! of the layers, calculation of the matrix elements
h(k8n8,kn;q), and summation of different bandsn, and re-
ciprocal lattice vectorsG. For incommensurate lattices one
always hasG1505G2 , and in the remaining part of the
paper we assume this to be the case. The other technical
steps do not pose conceptual difficulties, and in the present
context we find it appropriate to consider simplified systems
where to a certain extent analytic progress can be made, and
for which the physics is transparent.

The central issue of this paper is the possible sign reversal
of the drag. We demonstrate this first for a one-dimensional
model,28 neglecting interband processes and the momentum
dependence of the transport relaxation time. For this case,
correlation function~3! becomesD5t trF(q,v), where

F~q,v!52
2p

L (
k

~vk2vk1q!

3@nF~«k!2nF~«k1q!#d~«k2«k1q2v!

5(
ki

sign~vki
2vki1q!@nF~«ki

!2nF~«ki1q!#,

~4!

whereki are the solutions of«ki
2«ki1q2v50. For illustra-

tive purposes, we consider a cosine band,«k5
2\2/(ma2)coska, for which there are two~or no! solutions,
and one finds

F~q,v!5sign~v22v1!@nF~2«2!2nF~«1!2nF~2«1!

2nF~«2!#. ~5!

At half-filling the chemical potentialm vanishes, and making
use of nF,m(2«)512nF,2m(«), it is easy to see that the
result ~5! is an odd function ofm. Thus, in an experiment
where one of the subsystems is kept unchanged while in the
other the chemical potential is moved through half-filling,
the drag will change sign. While the above discussion is an
important demonstration of principle, it is necessary to also
consider periodically modulated two-dimensional electron
gases, which are the most commonly studied systems in this
context.

A system which has an identical periodic modulation in
bothx andy directions is characterized by particle-hole sym-
metry, and it seems natural that the drag passes through zero
when the two carrier species are matched. The experimen-
tally most relevant systems are those, however, where the
modulation is only in one direction25 ~the strongest modula-
tions have been achieved for these systems!, and hence
we choose the model system as follows:~1! There is a single
band ~the dispersion law and corresponding density of
states are illustrated in Fig. 1! with a tight-binding disper-
sion relation29 «(kx ,ky)5\2@12cos(kxa)#/(mxa

2)1\2ky
2/

(2my), and hence the velocity components arevx(kx)
5\sin(kxa)/(mxa) andvy(ky)5\ky /my . ~2! t tr is k indepen-
dent.~3! The interlayer interactionV12(q) is significant only
for small q.30

At low temperatures, it would appear permissible to ex-
pand inv, because]nB(v)/]v in the integrand cuts off the
higher v contributions. Following this procedure yields an
analytic expression forF, and the resulting drag resistivity

FIG. 1. The density of states for a two-dimensional system with
periodical modulation in one direction. The inset shows the constant
energy surfaces for the dispersion relation used in this work. The
energy is in units ofkBT052\2/(mxa

2).
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obeys the familiarT2 dependence known from unmodulated
two-dimensional systems.1,14 In this scheme, the transresisi-
tivity divergeswhenm52\2/(mxa

2) with the opposite sign
from the low densityrxx. This divergence, which is related
to the divergence in the density of states at this energy~see
Fig. 1!, is unphysical because it only occurs in the experi-
mentally unreachableT50 limit. Nevertheless, it is interest-
ing to observe that this approximation leads to a change of
sign in the transconductance, and we should expect this be-
havior to be most prominent whenm52\2/(mxa

2).
To cure this spurious divergence one must avoid expan-

sions, and perform a numerical evaluation. As a starting
point we have found it convenient to use

Fx~q,v!5
my

~2p!2\qymxa
E

2p/a1qx/2

p/a2qx/2

dkx@sin~kx2qx/2!a

2sin~kx1qx/2!a#$nF@kx2qx/2,ky0~kx!2qy/2#

2nF@kx1qx/2,ky0~kx!1qy/2#%, ~6!

where

ky0~kx!5
my

\2qy
F\v1

\2

mxa
2

@cos~kx1qx/2!a

2cos~kx2qx/2!a#G . ~7!

While the Kubo formula gives the transconductivity, it is
often most convenient to express the results in terms of tran-
sresisistivity ~this is the object usually recorded in experi-
ments! rJ21, whose components are given by

r21
xx52

s21
xx

s11
xxs22

xx2s12
xxs21

xx
.2

s21
xx

s11
xxs22

xx
, ~8!

and analogously for theyy component. The transresisivity
tensor has the additional advantage that does not involve the
transport relaxation times for the individual layers, as long as

these are momentum independent. The computed transresisi-
tivity is shown in Fig. 2 for four different temperatures. The
most important feature is that the drag indeed changes sign;
the effect is most prominent for low temperatures, and den-
sities close to a fully occupied band.31 In Figs. 3 and 4 we
compare thexx and yy components of the computed
transconductances~the xx component was used in calculat-
ing the results of Fig. 2!. We observe that the sign change
does not take place fors12

yy , nevertheless an interesting
double-peak structure emerges.

An analysis of the several assumptions made in our cal-
culations is now in place. We have assumed that the system
only has one band. Clearly, this assumption breaks down
when the density so large that Fermi energy significantly
exceeds 2\2/(2mxa

2), because the carriers will start to oc-
cupy higher bands. We also have assumed that temperature is
low enough that the inelastic mean-free path, in is much
longer than period of the potential modulation,a. For finite
, in the system is roughly divided into coherent regions of
order, in

2 . If , in&a, the electrons do not coherently feel the

FIG. 2. The calculated transresistivityrD
xx , as a function of the

density for four different temperatures. Superlattice period
a5140 Å, and the layer separation is 280 Å.

FIG. 3. The normalized transconductivitysD
xx , as a function of

the density for the same temperatures as in Fig. 1.

FIG. 4. The normalized transconductivitysD
yy , as a function of

the density for four different temperatures.
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periodic potential, and the drag characteristics will be given
by an average of the drag over the density fluctuation caused
by the potential modulation. Since the system as a whole acts
like a ~nearly! uniform system in this case, effects described
in this paper will not be observable at temperatures for which
, in&a.

To summarize, we have developed a theory for drag in
bilayer systems where there is a periodic potential modula-
tion. We have calculated the drag for the case where there is
potential modulation in one direction in one of the two lay-
ers. For the studied system, at low temperatures, the transre-

sistivity changes sign as the density is increased.31 Experi-
mentally, it may be possible to fabricate the system
investigated here by overgrowing a pair of quantum wells
over a cleaved edge,25 or using lithographic techniques.32
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