713 research outputs found

    Professionalism, Agency, and Market Failures

    Get PDF
    According to the Market Failures Approach to business ethics, beyond-compliance duties can be derived by employing the same rationale and arguments that justify state regulation of economic conduct. Very roughly the idea is that managers have a duty to behave as if they were complying with an ideal regulatory regime ensuring Pareto-optimal market outcomes. Proponents of the approach argue that managers have a professional duty not to undermine the institutional setting that defines their role, namely the competitive market. This answer is inadequate, however, for it is the hierarchical firm, rather than the competitive market, that defines the role of corporate managers and shapes their professional obligations. Thus, if the obligations that the market failures approach generates are to apply to managers, they must do so in an indirect way. I suggest that the obligations the market failures approach generates directly apply to shareholders. Managers, in turn, inherit these obligations as part of their duties as loyal agents

    Effort and Achievement

    Get PDF
    Achievements have recently begun to attract increased attention from value theorists. One recurring idea in this budding literature is that one important factor determining the magnitude or value of an achievement is the amount of effort the achiever invested. The aim of this paper is to present the most plausible version of this idea. This advances the current state of debate where authors are invoking substantially different notions of effort and are thus talking past each other. While the concept of effort has been invoked in the philosophical analysis of a number of important concepts such as desert, attention, competence, and distributive justice, it has hardly ever been analyzed itself. This paper makes headway in this regard by discussing three ambiguities in the everyday notion of effort. It continues to develop two accounts of effort and shows how both of them are achievement-enhancing

    Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia

    Full text link
    Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however recent evidence also points towards sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. We here tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging based probabilistic tracking we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANnl scores in dyslexics, but in neurotypical readers. Our findings provide first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia, and that it may also impact on reading related cognitive abilities in neurotypical readers

    An information theoretic characterisation of auditory encoding.

    Get PDF
    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content

    Source and Bearer : Metz on the Pure Part-Life View of Meaning

    Get PDF
    application/pdfArticleJournal of Philosophy of Life. 2015, 5 (3), p.1-18departmental bulletin pape

    Navigating the Auditory Scene: An Expert Role for the Hippocampus

    Get PDF
    Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner

    Responses in left inferior frontal gyrus are altered for speech-in-noise processing, but not for clear speech in autism

    Get PDF
    Introduction Autistic individuals often have difficulties with recognizing what another person is saying in noisy conditions such as in a crowded classroom or a restaurant. The underlying neural mechanisms of this speech perception difficulty are unclear. In typically developed individuals, three cerebral cortex regions are particularly related to speech-in-noise perception: the left inferior frontal gyrus (IFG), the right insula, and the left inferior parietal lobule (IPL). Here, we tested whether responses in these cerebral cortex regions are altered in speech-in-noise perception in autism. Methods Seventeen autistic adults and 17 typically developed controls (matched pairwise on age, sex, and IQ) performed an auditory-only speech recognition task during functional magnetic resonance imaging (fMRI). Speech was presented either with noise (noise condition) or without noise (no noise condition, i.e., clear speech). Results In the left IFG, blood-oxygenation-level-dependent (BOLD) responses were higher in the control compared to the autism group for recognizing speech-in-noise compared to clear speech. For this contrast, both groups had similar response magnitudes in the right insula and left IPL. Additionally, we replicated previous findings that BOLD responses in speech-related and auditory brain regions (including bilateral superior temporal sulcus and Heschl's gyrus) for clear speech were similar in both groups and that voice identity recognition was impaired for clear and noisy speech in autism. Discussion Our findings show that in autism, the processing of speech is particularly reduced under noisy conditions in the left IFG—a dysfunction that might be important in explaining restricted speech comprehension in noisy environments

    Visual mechanisms for voice‐identity recognition flexibly adjust to auditory noise level

    Get PDF
    Recognising the identity of voices is a key ingredient of communication. Visual mechanisms support this ability: recognition is better for voices previously learned with their corresponding face (compared to a control condition). This so-called 'face-benefit' is supported by the fusiform face area (FFA), a region sensitive to facial form and identity. Behavioural findings indicate that the face-benefit increases in noisy listening conditions. The neural mechanisms for this increase are unknown. Here, using functional magnetic resonance imaging, we examined responses in face-sensitive regions while participants recognised the identity of auditory-only speakers (previously learned by face) in high (SNR -4 dB) and low (SNR +4 dB) levels of auditory noise. We observed a face-benefit in both noise levels, for most participants (16 of 21). In high-noise, the recognition of face-learned speakers engaged the right posterior superior temporal sulcus motion-sensitive face area (pSTS-mFA), a region implicated in the processing of dynamic facial cues. The face-benefit in high-noise also correlated positively with increased functional connectivity between this region and voice-sensitive regions in the temporal lobe in the group of 16 participants with a behavioural face-benefit. In low-noise, the face-benefit was robustly associated with increased responses in the FFA and to a lesser extent the right pSTS-mFA. The findings highlight the remarkably adaptive nature of the visual network supporting voice-identity recognition in auditory-only listening conditions
    corecore