9 research outputs found

    Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential

    Full text link
    In the age of big data, soil data are more available and richer than ever, but – outside of a few large soil survey resources – they remain largely unusable for informing soil management and understanding Earth system processes beyond the original study. Data science has promised a fully reusable research pipeline where data from past studies are used to contextualize new findings and reanalyzed for new insight. Yet synthesis projects encounter challenges at all steps of the data reuse pipeline, including unavailable data, labor-intensive transcription of datasets, incomplete metadata, and a lack of communication between collaborators. Here, using insights from a diversity of soil, data, and climate scientists, we summarize current practices in soil data synthesis across all stages of database creation: availability, input, harmonization, curation, and publication. We then suggest new soil-focused semantic tools to improve existing data pipelines, such as ontologies, vocabulary lists, and community practices. Our goal is to provide the soil data community with an overview of current practices in soil data and where we need to go to fully leverage big data to solve soil problems in the next century

    An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0

    Get PDF
    Radiocarbon is a critical constraint on our estimates of the timescales of soil carbon cycling that can aid in identifying mechanisms of carbon stabilization and destabilization and improve the forecast of soil carbon response to management or environmental change. Despite the wealth of soil radiocarbon data that have been reported over the past 75 years, the ability to apply these data to global-scale questions is limited by our capacity to synthesize and compare measurements generated using a variety of methods. Here, we present the International Soil Radiocarbon Database (ISRaD; http://soilradiocarbon.org, last access: 16 December 2019), an open-source archive of soil data that include reported measurements from bulk soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil profile. The core of ISRaD is a relational database structured around individual datasets (entries) and organized hierarchically to report soil radiocarbon data, measured at different physical and temporal scales as well as other soil or environmental properties that may also be measured and may assist with interpretation and context. Anyone may contribute their own data to the database by entering it into the ISRaD template and subjecting it to quality assurance protocols. ISRaD can be accessed through (1) a web-based interface, (2) an R package (ISRaD), or (3) direct access to code and data through the GitHub repository, which hosts both code and data. The design of ISRaD allows for participants to become directly involved in the management, design, and application of ISRaD data. The synthesized dataset is available in two forms: the original data as reported by the authors of the datasets and an enhanced dataset that includes ancillary geospatial data calculated within the ISRaD framework. ISRaD also provides data management tools in the ISRaD-R package that provide a starting point for data analysis; as an open-source project, the broader soil community is invited and encouraged to add data, tools, and ideas for improvement. As a whole, ISRaD provides resources to aid our evaluation of soil dynamics across a range of spatial and temporal scales. The ISRaD v1.0 dataset is archived and freely available at https://doi.org/10.5281/zenodo.2613911 (Lawrence et al., 2019).Max Planck Institute for Biogeochemistry; European Research CouncilEuropean Research Council (ERC) [695101]; USGS Land Change Science mission area; US Department of AgricultureUnited States Department of Agriculture (USDA) [2018-67003-27935]; US Geological Survey Powell Center for the working group on Soil Carbon Storage and FeedbacksOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    What influences upland soil chemistry in the Amazon basin, Brazil? Major, minor and trace elements in the upper rhizosphere

    No full text
    Increasing land transformation in the Amazon basin, from forest to post-forest usage such as pastureland, agriculture and agroforestry, triggers significant changes in hydrology, soil fertility and regional climatology. However, relatively little is known about Amazon basin soil chemistry in general and about its possible alteration with recent land-use change. We present robust pedogeochemical data for 65 elements and oxides, and evidence for modification due to recent deforestation and post-forest land use on upland soils in Amazonas state, Brazil. Differences emerge in median element concentrations between these two land-cover types, and between central and southern parts of the basin. These new data, a product of the bi-national EcoRespira-Amazon (ERA) project, are based on triplicate sampling under different seasonal conditions at 29 sites, representing ca. 740,000 km2 and average annual meteorological conditions. Mineral soil samples (TOP: 0–20 cm; BOT: 30–50 cm) characterize the active upper rhizosphere. Data were obtained with very tight quality control from sampling to analysis (following GEMAS protocols), using various overlapping analytical methods. Some major, minor and trace element concentrations deviate strongly from established world soil averages, including the recent PEGS2. Geological (lithological) and weathering boundary conditions define the primary soil chemical signal. This is overprinted by biogeochemical forces (ecosystem feedbacks), and recently by human intervention (change of land cover, deforestation). The general assumption of depleted tropical soils is not justified as such – a more differentiated view is needed, since carbon and macronutrients such as nitrogen and phosphorous, albeit not always plant-available, do often occur in relatively high concentrations (median values TOP: 1.9, 0.15 and 0.02 wt%). Calcium, magnesium and potassium are truly depleted (median values TOP: 0.025, 0.095 and 0.065 wt%), albeit with noticeable variance. Trace elements, from silver to zirconium and including REE, show highly differentiated responses. Most are relatively enriched in post-forest soils; a subtle signal that is interpreted as reduced plant-soil interaction. BOT concentrations are generally higher than those in TOP soil, reflecting weathering conditions and biogeochemical cycling – with interesting exceptions (Br, Cd, Rb). © 2019 Elsevier B.V

    What influences upland soil chemistry in the Amazon basin, Brazil? Major, minor and trace elements in the upper rhizosphere

    No full text
    Increasing land transformation in the Amazon basin, from forest to post-forest usage such as pastureland, agriculture and agroforestry, triggers significant changes in hydrology, soil fertility and regional climatology. However, relatively little is known about Amazon basin soil chemistry in general and about its possible alteration with recent land-use change. We present robust pedogeochemical data for 65 elements and oxides, and evidence for modification due to recent deforestation and post-forest land use on upland soils in Amazonas state, Brazil. Differences emerge in median element concentrations between these two land-cover types, and between central and southern parts of the basin. These new data, a product of the bi-national EcoRespira-Amazon (ERA) project, are based on triplicate sampling under different seasonal conditions at 29 sites, representing ca. 740,000 km2 and average annual meteorological conditions. Mineral soil samples (TOP: 0–20 cm; BOT: 30–50 cm) characterize the active upper rhizosphere. Data were obtained with very tight quality control from sampling to analysis (following GEMAS protocols), using various overlapping analytical methods. Some major, minor and trace element concentrations deviate strongly from established world soil averages, including the recent PEGS2.Geological (lithological) and weathering boundary conditions define the primary soil chemical signal. This is overprinted by biogeochemical forces (ecosystem feedbacks), and recently by human intervention (change of land cover, deforestation). The general assumption of depleted tropical soils is not justified as such – a more differentiated view is needed, since carbon and macronutrients such as nitrogen and phosphorous, albeit not always plant-available, do often occur in relatively high concentrations (median values TOP: 1.9, 0.15 and 0.02 wt%). Calcium, magnesium and potassium are truly depleted (median values TOP: 0.025, 0.095 and 0.065 wt%), albeit with noticeable variance. Trace elements, from silver to zirconium and including REE, show highly differentiated responses. Most are relatively enriched in post-forest soils; a subtle signal that is interpreted as reduced plant-soil interaction. BOT concentrations are generally higher than those in TOP soil, reflecting weathering conditions and biogeochemical cycling – with interesting exceptions (Br, Cd, Rb)211COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESNão te

    Understanding soil organic carbon dynamics at larger scales

    No full text
    In this chapter, we focus on the effects of biotic and abiotic factors controlling soil organic carbon dynamics at continental to global scales. On the side of natural effects, we highlight processes that can control carbon inputs, turnover, and stabilization in soils. On the side of anthropogenic effects, we focus on the role of climate change as well as historic and modern land conversion. We hereby divide anthropogenic effects into direct and indirect disturbances done by humans. Both overarching sections close with a short synthesis

    Large-scale controls of soil organic carbon in (sub)tropical soils

    Get PDF
    Soil organic carbon (SOC) is a key component of terrestrial ecosystems. Experimental studies have shown that soil texture and geochemistry have a strong effect on carbon stocks. However, those findings primarily rely on data from temperate regions or use model approaches that are often based on limited data from tropical and sub-tropical regions. Here, we evaluate the controls on soil carbon stocks in Africa, using a dataset of 1,580 samples. These were collected across Sub-Saharan Africa (SSA) within the framework of the Africa Soil Information Service (AfSIS) project, which was built on the well-established Land Degradation Surveillance Framework (LDSF). Samples were taken from two depths (0–20 cm and 20–50 cm) at 46 LDSF sites that were stratified according to Koeppen-Geiger climate zones. The different pH-values, clay content, exchangeable cations and extractable elements across various soils of the different climatic zones (i.e. from arid to humid (sub)tropical) allow us to identify different soil and climate parameters that best explain SOC variance across SSA. We tested if these SOC predictors differed across climatological conditions, using the ratio of potential evapotranspiration (PET) to mean annual precipitation (MAP) as indicator. For water-limited regions (PET/MAP > 1), the best predictors were climatic variables, likely because of their effect on the quantity of carbon inputs. Geochemistry dominated SOC storage in energy-limited systems (PET/MAP < 1), reflecting its effect on carbon protection. On a continental scale, climate (e.g. PET) is key to predicting SOC content in topsoil, whereas geochemistry, particularly iron-oxyhydroxides and aluminum-oxides, is more important in subsoil. Clay content had little influence on SOC at both depths. These findings contribute to an improved understanding of the controls on SOC stocks in tropical and sub-tropical regions

    Continental-scale controls on soil organic carbon across sub-Saharan Africa

    No full text
    Earlier studies have demonstrated that soil texture and geochemistry strongly affect soil organic carbon (SOC) content. However, those findings primarily rely on data from temperate regions with soil mineralogy, weathering status and climatic conditions that generally differ from tropical and sub-tropical regions. We investigated soil properties and climate variables influencing SOC concentrations across sub-Saharan Africa. A total of 1,601 samples were analyzed, collected from two depths (0–20 cm and 20–50 cm) at 45 sentinel sites from 17 countries as part of the Africa Soil Information Service (AfSIS) project. The dataset spans climatic conditions from arid to humid and includes soils with a wide range of pHH20 values, weathering status, soil texture, exchangeable cations, extractable metals and a variety of important land cover types. The most important SOC predictors were identified by linear mixed effects models, regression trees and random forest models. Our results indicate that SOC is primarily controlled by aridity index (PET/MAP), exchangeable calcium (Caex) and oxalate-extractable aluminum (Alox); this was found across both depth intervals. Oxalate-extractable iron (Feox) emerged as the most important predictor for both depth intervals in the regression tree and random forest analyses. However, its influence on SOC concentrations was strong only below Feox concentrations of 0.25 wt %. This suggests that Feox can act as a pedogenic threshold – even on a continental scale. Across model-ling approaches, clay and fine silt content (< 8 µm) and land cover were not significant SOC pre-dictors, in contrast to common assumptions. Our findings indicate that the key controlling factors of SOC across sub-Saharan Africa are similar to what has been reported for temperate regions – except for soil texture and vegetation cover. However, the strength and importance of the controlling factors vary across the environmental gradient we studied

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    X. Literaturverzeichnis

    No full text
    corecore