23 research outputs found

    Genotyping of Giardia duodenalis among children and dogs in a closed socially deprived community from Italy

    Get PDF
    Molecular characterization of Giardia duodenalis cysts from humans and animals living in well-defined contexts is useful to study the circulation of isolates and represents a tool to evaluate zoonotic infection risk. The presence of giardiasis in children living in a disadvantaged and socially deprived small Rom community, as well in dogs roaming freely in the same context was carried out by microscopic analysis and beta-giardin gene amplification. Five out of 14 children were found positive at microscopic examination for G. duodenalis and six positive at PCR, while eight out of 14 dogs tested both microscopically and molecularly positive for G. duodenalis. Moreover, most of the children and dogs were symptomatic. Molecular characterization of Giardia positive samples from children and dogs showed 99.5% identity with Giardia Assemblage A1. The dog-specific genotypes C and D were not found. The findings of this survey provide the first European evidence to support the possible role of dogs in zoonotic transmission involving children and stray dogs in a closed context with very low standards of hygiene (i.e. Rom community), and these results show the need to monitor the health of marginal populations to safeguard ethnic minority groups

    Identification of Zoonotic Genotypes of Giardia duodenalis

    Get PDF
    Giardia duodenalis, originally regarded as a commensal organism, is the etiologic agent of giardiasis, a gastrointestinal disease of humans and animals. Giardiasis causes major public and veterinary health concerns worldwide. Transmission is either direct, through the faecal-oral route, or indirect, through ingestion of contaminated water or food. Genetic characterization of G. duodenalis isolates has revealed the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals, but the role of animals in the epidemiology of human infection is still unclear, despite the fact that the zoonotic potential of Giardia was recognised by the WHO some 30 years ago. Here, we performed an extensive genetic characterization of 978 human and 1440 animal isolates, which together comprise 3886 sequences from 4 genetic loci. The data were assembled into a molecular epidemiological database developed by a European network of public and veterinary health Institutions. Genotyping was performed at different levels of resolution (single and multiple loci on the same dataset). The zoonotic potential of both assemblages A and B is evident when studied at the level of assemblages, sub-assemblages, and even at each single locus. However, when genotypes are defined using a multi-locus sequence typing scheme, only 2 multi-locus genotypes (MLG) of assemblage A and none of assemblage B appear to have a zoonotic potential. Surprisingly, mixtures of genotypes in individual isolates were repeatedly observed. Possible explanations are the uptake of genetically different Giardia cysts by a host, or subsequent infection of an already infected host, likely without overt symptoms, with a different Giardia species, which may cause disease. Other explanations for mixed genotypes, particularly for assemblage B, are substantial allelic sequence heterogeneity and/or genetic recombination. Although the zoonotic potential of G. duodenalis is evident, evidence on the contribution and frequency is (still) lacking. This newly developed molecular database has the potential to tackle intricate epidemiological questions concerning protozoan diseases

    Multilocus Genotyping of Human Giardia Isolates Suggests Limited Zoonotic Transmission and Association between Assemblage B and Flatulence in Children

    Get PDF
    Giardia intestinalis is a protozoan parasite found world-wide and it is a major cause of diarrhea in humans and other mammals. The genetic variability within G. intestinalis is high with eight distinct genotypes or assemblages (A-H). Here we performed sequence-based multilocus genotyping of around 200 human Giardia isolates. We found evidence of limited zoonotic transmission of certain A subtypes and an association between flatulence and assemblage B infection in children. This shows that it is important to investigate different assemblages and sub-assemblages of G. intestinalis in human infections in order to understand the clinical significance, zoonotic potential, sequence divergence, and transmission pathways of this parasite

    Detection and multilocus genotyping of Giardia duodenalis

    No full text
    Giardia duodenalis (also known as G. intestinalis) is a flagellated protozoan that parasitizes the small intestine and is a common causal agent of zoonotic infections in humans and animals. To assess the genetic diversity and zoonotic transmission potential of G. duodenalis in stray dogs, 159 fecal specimens were collected from dogs in Chengdu, Yaan, and Leshan in Sichuan province, China. Of the 159 fecal samples from stray dogs, 18 (11.3%) were G. duodenalis-positive based on nested PCR amplification of the beta giardin (bg) gene, and the occurrence varied from 1.8% to 35% in different cities. Dog-specific assemblages C (n = 9) and D (n = 9) were identified. The glutamate dehydrogenase (gdh) and triosephosphate isomerase (tpi) genes of all bg-positive isolates were characterized. A total of 16 and 8 isolates were positive for the gdh and tpi genes, respectively. Two novel sequences of the bg locus were detected among genetic assemblage D isolates, and one novel gdh sequence and four novel tpi sequences were identified among genetic assemblage C isolates. Mixed infections of assemblages C and D were also detected. Assemblages A and B, which have high zoonotic potential, were not detected. Our results show that G. duodenalis is prevalent and a cause of diarrhea in dogs in Sichuan province, China
    corecore