309 research outputs found

    The Exotic XYZ Charmonium-like Mesons

    Full text link
    Charmonium, the spectroscopy of c\bar{c} mesons, has recently enjoyed a renaissance with the discovery of several missing states and a number of unexpected charmonium-like resonances. The discovery of these new states has been made possible by the extremely large data samples made available by the B-factories at the Stanford Linear Accelerator Center and at KEK in Japan, and at the CESR e^+e^- collider at Cornell. Conventional c\bar{c} states are well described by quark potential models. However, many of these newly discovered charmonium-like mesons do not seem to fit into the conventional c\bar{c} spectrum. There is growing evidence that at least some of these new states are exotic, i.e. new forms of hadronic matter such as mesonic-molecules, tetraquarks, and/or hybrid mesons. In this review we describe expectations for the properties of conventional charmonium states and the predictions for molecules, tetraquarks and hybrids and the various processes that can be used to produce them. We examine the evidence for the new candidate exotic mesons, possible explanations, and experimental measurements that might shed further light on the nature these states.Comment: 28 pages, 7 figures. Review for Ann Rev Nucl & Part Sc

    Nonleptonic Decays and Lifetimes of b-quark and c-quark Hadrons

    Get PDF
    We review recent experimental results on lifetimes and hadronic decays of hadrons that contain cc and bb quarks. The theoretical implications of these results are also considered. An understanding of hadronic decays of heavy quarks is required to interpret the CP violating asymmetries in BB decays that will be observed in experiments planned for the near future.Comment: 74 pages, LATEX format with 12 figures. To appear in Annual Review of Nuclear and Particle Science, Vol. 46. Also available at http://www-physics.mps.ohio-state.edu/~phys111/b-physics/bphysics.html and by anonymous ftp from ftp://pacific.mps.ohio-state.edu/pub/hepex/kh A serious typographical error on p. 8 is corrected. Other errors and typos are also correcte

    On the elliptical flow in asymmetric collisions and nuclear equation of state

    Full text link
    We here present the results of elliptical flow for the collision of different asymmetric nuclei (10Ne20 +13 Al27, 18Ar40 +21 Sc45, 30Zn64 +28 Ni58, 36Kr86 +41 Nb93) by using the Quantum Molecular Dynamics (QMD) model. General features of elliptical flow are investigated with the help of theoretical simulations. The simulations are performed at different beam energies between 40 and 105 MeV/nucleon. A significant change can be seen from in-plane to out-of-plane elliptical flow of different fragments with incident energy. A comparison with experimental data is also made. Further, we predict, for the first time that, elliptical flow for different kind of fragments follow power law dependence ? C(Atot)? for asymmetric systems

    Effective Field Theories for Heavy Quarkonium

    Full text link
    We briefly review how nonrelativistic effective field theories give us a definition of the QCD potentials and a coherent field theory derived quantum mechanical scheme to calculate the properties of bound states made by two or more heavy quarks. In this framework heavy quarkonium properties depend only on the QCD parameters (quark masses and \als) and nonpotential corrections are systematically accounted for. The relation between the form of the nonperturbative potentials and the low energy QCD dynamics is also discussed.Comment: Invited Plenary talk at The 20th European Conference on Few-Body Problems in Physics. September 10-14 2007. Pisa, Italy. To be published on Few-Body System

    Hidden charm and bottom molecular states

    Get PDF
    We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent counter-terms. Neglecting 1/mQ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the X(3872) and Zb(10610) states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the Zb(10610) and the Zb(10650) states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we also study the X(3872)→D0D¯0π0 decay, which is not only sensitive to the short distance part of the X(3872) molecular wave function, as the J/ψππ and J/ψ3π X(3872) decay modes are, but it is also affected by the long-distance structure of the resonance. Furthermore, this decay might provide some information on the interaction between the DD¯ charm mesons

    Form factors of tetraquarks

    Full text link
    The electromagnetic form factors of tetraquarks are calculated in the framework of relativistic quark model at small and intermediate momentum transfers Q^2 < 1 GeV^2. The charge radii of X(3872) and X(3940) tetraquarks are determined.Comment: 15 pages, 2 figure

    What two models may teach us about duality violations in QCD

    Full text link
    Though the operator product expansion is applicable in the calculation of current correlation functions in the Euclidean region, when approaching the Minkowskian domain, violations of quark-hadron duality are expected to occur, due to the presence of bound-state or resonance poles. In QCD finite-energy sum rules, contour integrals in the complex energy plane down to the Minkowskian axis have to be performed, and thus the question arises what the impact of duality violations may be. The structure and possible relevance of duality violations is investigated on the basis of two models: the Coulomb system and a model for light-quark correlators which has already been studied previously. As might yet be naively expected, duality violations are in some sense "maximal" for zero-width bound states and they become weaker for broader resonances whose poles lie further away from the physical axis. Furthermore, to a certain extent, they can be suppressed by choosing appropriate weight functions in the finite-energy sum rules. A simplified Ansatz for including effects of duality violations in phenomenological QCD sum rule analyses is discussed as well.Comment: 17 pages, 6 figures; version to appear in JHE
    corecore