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We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-
range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting
heavy quark spin symmetry contains four independent counter-terms. Neglecting 1/mQ corrections,
three of these low energy constants can be determined by theorizing a molecular description of the
X(3872) and Zb(10610) states. Thus, we can predict new hadronic molecules, in particular the
isovector charmonium partners of the Zb(10610) and the Zb(10650) states. We also discuss hadron
molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the
heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we
also study the X(3872) → D0D̄0π0 decay, which is not only sensitive to the short distance part of
the X(3872) molecular wave function, as the J/ψππ and J/ψ3π X(3872) decay modes are, but it is
also affected by the long-distance structure of the resonance. Furthermore, this decay might provide
some information on the interaction between the DD̄ charm mesons.

PACS numbers: 03.65.Ge, 13.75.Lb, 14.40Pq, 14.40Rt

I. HEAVY MESON MOLECULES

The recent discoveries of exotic heavy quarkonium states revived old expectations on the possible existence of molec-
ular (loosely bound mesonic colour singlets) states [1, 2]. The most likely candidates are the X(3872) resonance [3]
and the isovector Zb(10610) and Zb(10650) states [4, 5]. The proximity of the X(3872) to the DD̄∗0 threshold and
its decay properties have led to the general acceptance that it is a weakly bound state, with quantum numbers
JPC = 1++ [6], generated from D0D̄∗0, D+D̄∗− coupled channel interactions [7]1. Heavy quark symmetries deduced
from QCD provide an adequate framework to study these systems. Thus, heavy quark spin symmetry (HQSS) implies
that molecular states should appear in HQSS multiplets, while from heavy flavor symmetry (HFS), similarities in
the bottom and charm spectra might be expected. Indeed, combining both HQSS and HFS, various partners of the
X(3872) and the isovector Z ′s

b states can be predicted [8–15].
Actually, HQSS heavily constrains the low-energy interactions among heavy hadrons [9, 11, 13, 14, 16]. As long

as the hadrons are not too tightly bound, they will not probe the specific details of the interaction binding them at
short distances. Moreover, each of the constituent heavy hadrons will be unable to see the internal structure of the
other heavy hadron. This separation of scales can be used to formulate an effective field theory (EFT) description of
hadronic molecules [11, 13] compatible with the approximate nature of HQSS. At very low energies, the leading order
(LO) interaction between pseudoscalar and vector charmed (D0, D+, D∗0, D∗+) and anti-charmed (D̄0, D−, D̄∗0, D∗−)
mesons2 can be described just in terms of a contact-range potential, which is constrained by HQSS [13–15]. Pion
exchange and particle coupled-channel3 effects turn out to be sub-leading [13, 17].
The LO Lagrangian contains four independent terms in the SU(3) flavor limit [14], which strength is set by two

isoscalar C0A and C0B and two isovector C1A and C1B low energy constants (LEC’s). The (contact) interaction
potential is used as kernel of a two body elastic Lippmann-Swinger equation (LSE). The LSE shows an ill-defined
ultraviolet (UV) behaviour, and it requires a regularization and renormalization procedure (see Refs. [14, 15] for
details). The LSE non-perturbative re-summation restores elastic unitarity and provides a non-analytical structure of
the scattering amplitudes. Bound states (D(∗)D̄(∗) or B(∗)B̄(∗) molecules) correspond to poles of the T -matrix below
threshold on the real axis in the first Riemann sheet of the complex energy, while virtual states, that if located near
threshold might be relevant, show up in the second Riemann sheet.

1 When we refer to D0D̄∗0, D+D∗−, or in general DD̄∗, we are actually referring to the combination of these states with their charge
conjugate ones in order to form a state with well-defined C-parity.

2 The discussion runs in parallel for the bottom sector.
3 We do not refer to charge channels, but rather to the mixing among the DD̄, DD̄∗, D∗D̄∗ pairs in a given IJC (isospin, spin and charge
conjugation) sector.
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TABLE I: Heavy meson–heavy meson combinations having the same contact term as the X(3872) and Zb(10610), and the
predictions of the masses, which are understood to correspond to bound states except if we write “V” in parenthesis for
denoting a virtual state. †: increasing the strength of the potential to account for the various uncertainties, the virtual pole
evolves into a bound state. Masses are given (MeV units) for two UV regulators. For further details see [15].

I(JPC) States M (Λ = 0.5 GeV) M (Λ = 1 GeV) Measurements

0(1++) DD̄∗ 3871.68 (input) 3871.68 (input) 3871.68 ± 0.17 [20]

0(2++) D∗D̄∗ 4012+4
−5 4012+5

−12 ?

0(1++) BB̄∗ 10580+9
−8 10539+25

−27 ?

0(2++) B∗B̄∗ 10626+8
−9 10584+25

−27 ?

0(2+) D∗B∗ 7322+6
−7 7308+16

−20 ?

1(1+−) BB̄∗ 10602.4 ± 2.0 (input) 10602.4 ± 2.0 (input) 10607.2 ± 2.0 [4]

10597 ± 9 [21]

1(1+−) B∗B̄∗ 10648.1 ± 2.1 10648.1+2.1
−2.5 10652.2 ± 1.5 [4]

10649 ± 12 [21]

1(1+−) DD̄∗ 3871+4
−12 (V) 3837+17

−35 (V) 3899.0 ± 3.6± 4.9 [22]

3894.5 ± 6.6± 4.5 [23]

1(1+−) D∗D̄∗ 4013+4
−11 (V) 3983+17

−32 (V) ?

1(1+) D∗B∗ 7333.6†−4.2 (V) 7328+5
−14 (V) ?

Two combinations of the LEC’s can be obtained from the properties of the X(3872) resonance4, assuming that

it is a
(

DD̄∗ −D∗D̄
)

/
√
2 bound state. The isospin properties of the X(3872) molecule are mainly determined by

its mass, which is only few tens of keV below the D0D̄∗0 threshold, making relevant the around 8 MeV difference
between the threshold of the neutral and of the charged (D+D∗−) channels [7, 14].
Assuming HFS, a third independent combination of LEC’s is fixed from the isovector Zb(10610) resonance, described

as
(

BB̄∗ +B∗B̄
)

/
√
2 molecular state. Note, HQSS predicts the interaction of the B∗B̄∗ system with I = 1, JPC =

1+− quantum numbers to be identical to that of the BB̄∗ pair in the Zb(10610) sector. Thus, HQSS naturally explains
the approximate degeneracy of the Zb(10610) and Zb(10650) resonances [4, 5].
There are various D(∗)D̄(∗), B(∗)B̄(∗) and D(∗)B̄(∗) sectors where the interaction is completely fixed by the the

three linear combinations of LEC’s obtained from the X(3872) and the Zb(10610) resonances, which allows us to
make predictions on the existence of additional molecular states, by solving the LSE as previously commented. Some
of these approximate predictions from [15] are collected in Table I.

II. TRIPLY HEAVY PENTAQUARKS

The existence of heavy meson-antimeson molecules implies the possibility of partners composed of a heavy meson
and a doubly-heavy baryon (triply-heavy pentaquarks) [24]. This is based on the approximate heavy antiquark-
diquark symmetry (HADS) that emerges from the observation that the interactions of heavy color triplet objects with
the light degrees of freedom (quarks and gluons) are independent of the heavy color triplet’s spin and mass [25].
A first consequence is that the spectrum of baryons with two heavy quarks can be related to the spectrum of heavy

light mesons with the same light degree of freedom quantum numbers [25]. The heavy diquark component of the
baryon forms a color anti-triplet with a characteristic length scale of 1/(mQv), where mQ is the mass of the heavy
quarks and v their velocity. The length scale of the diquark is smaller than the typical QCD length scale 1/ΛQCD

and hence we can treat the diquark as point-like if the quarks are heavy enough.
Within this scheme, we hint the existence of several baryonic partners of the X(3872) with isospin I = 0 and

JP = 5
2

−

or 3
2

−

. Moreover, we predict various Ξ∗

bbB̄
∗ triply-heavy pentaquarks with quantum numbers I(JP ) = 1(12

−

)

and I(JP ) = 1(32
−

) partners of the Zb(10610) B
∗B̄∗ molecule.

4 Mass and the isospin violating ratio of the decay amplitudes for the X(3872) → J/ψππ and X(3872) → J/ψπππ transitions, RX(3872) =
0.26± 0.07 deduced in [18] using the experimental ratio BX = Γ [X → J/Ψ ρ ] /Γ [X → J/Ψω ] = 1.3± 0.5 [19].
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TABLE II: Doubly-heavy baryon–heavy meson molecules masses. The error in the masses of the isoscalar states is a conse-
quence of the approximate nature of HADS. For the isovector states, different error sources have been taken into account: the
uncertainty in the Zb binding, in the isospin breaking decays of the X and in the HADS breaking. For simplicity, we only
show an unique error obtained by adding in quadratures all the previous ones. Mth represents the threshold, and all masses
are given in units of MeV. When we decrease the strength of the potential to account for the various uncertainties, in some
cases (marked with † in the table) the bound state pole reaches the threshold and the state becomes virtual. The cases with a
virtual state pole at the central value are marked by [V], for which †† means that the pole evolves into a bound state one and
N/A means that the pole is far from the threshold with a momentum larger than 1 GeV so that it is both undetectable and
beyond the EFT range. For further details see [24].

State I(JP ) V LO Thresholds M (Λ = 0.5 GeV) M(Λ = 1 GeV)

Ξ∗
ccD

∗ 0( 5
2

−
) C0a + C0b 5715 (Mth − 10)+10

−15 (Mth − 19)†
−44

Ξ∗
ccB̄

∗ 0( 5
2

−
) C0a + C0b 9031 (Mth − 21)+16

−19 (Mth − 53)+45
−59

Ξ∗
bbD

∗ 0( 5
2

−
) C0a + C0b 12160 (Mth − 15)+9

−11 (Mth − 35)+25
−31

Ξ∗
bbB̄

∗ 0( 5
2

−
) C0a + C0b 15476 (Mth − 29)+12

−13 (Mth − 83)+38
−40

Ξ′
bcD

∗ 0( 3
2

−
) C0a + C0b 8967 (Mth − 14)+11

−13 (Mth − 30)+27
−40

Ξ′
bcB̄

∗ 0( 3
2

−
) C0a + C0b 12283 (Mth − 27)+15

−16 (Mth − 74)+45
−51

Ξ∗
bcD

∗ 0( 5
2

−
) C0a + C0b 9005 (Mth − 14)+11

−13 (Mth − 30)+27
−40

Ξ∗
bcB̄

∗ 0( 5
2

−
) C0a + C0b 12321 (Mth − 27)+15

−16 (Mth − 74)+46
−51

ΞbbB̄ 1( 1
2

−
) C1a 15406 (Mth − 0.3)†

−2.5 (Mth − 12)+11
−15

ΞbbB̄
∗ 1( 1

2

−
) C1a + 2

3
C1b 15452 (Mth − 0.9)[V]

N/A
†† (Mth − 16)+14

−17

ΞbbB̄
∗ 1( 3

2

−
) C1a − 1

3
C1b 15452 (Mth − 1.2)†

−2.9 (Mth − 10)+9
−13

Ξ∗
bbB̄ 1( 3

2

−
) C1a 15430 (Mth − 0.3)†

−2.4 (Mth − 12)+11
−13

Ξ∗
bbB̄

∗ 1( 1
2

−
) C1a − 5

3
C1b 15476 (Mth − 8)+8

−7 (Mth − 5)†
−8

Ξ∗
bbB̄

∗ 1( 3
2

−
) C1a − 2

3
C1b 15476 (Mth − 2.5)†−3.6 (Mth − 9)+9

−11

Ξ∗
bbB̄

∗ 1( 5
2

−
) C1a + C1b 15476 (Mth − 4.3)[V]

N/A
+3.3 (Mth − 18)+17

−19

X(3872) D
∗0

D
0

D̄
0

π 0

X(3872) X(3872)
D

∗0
D

∗+

π
0

π
0

D̄
0 D

−

D̄
0

D̄
0

D
0D

0
D

0D
+

(a) (b) (c)

FIG. 1: Feynman diagrams for the decay X(3872) → D0D̄0π0. The charge conjugate channel is not shown but included in the
calculations.

We compile some of these approximate predictions from [15] in Table II. They are subject to larger uncertainties
than those collected in Table I, since violations of HADS are expected to be larger than HQSS and HFS ones. i.e.,
O(ΛQCD/(mQv)) vs O(ΛQCD/mQ).

III. THE X(3872) → D0D̄0π0 DECAY AND THE LONG-DISTANCE STRUCTURE OF THE X(3872)
RESONANCE

Within the molecular picture of the X(3872) resonance, in its decay modes with a charmonium in the final state
(J/ψππ, J/ψ3π, J/ψγ and ψ′γ), the heavy quarks of the DD̄∗ meson pair have to recombine to form the final
charmonium. As a consequence, these processes are not sensitive to the DD̄∗ wave function at long distances which
is governed by the binding energy, but rather they are determined by the short distance part of the X(3872) wave-
function [7].
The transition from the charm–anti-charm meson pair into the J/ψ plus pions (or a photon), occurs at a distance

much smaller than both the size of the X(3872) as a hadronic molecule and the range of forces between the D and
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D̄∗ mesons. However, in the case of the X(3872) → D0D̄0π0 decay, one of the constituent hadrons (D0) is in the final
state and the rest of the final particles are products of the decay of the other constituent hadron (D̄∗0) of the X(3872)
molecule. Thus, in this decay the relative distance between the DD̄∗ mesons can be as large as allowed by the size
of the X(3872) resonance, since the final state is produced by the decay of the D̄∗ meson instead of a rescattering
transition. Actually, it can be proved that within some approximations, the dΓ/d|~pD0 | distribution is related to the
X(3872) wave-function Ψ(~pD0) [26].
We have estimated the X(3872) → D0D̄0π0 decay width by evaluating the diagrams depicted in Fig. 1. The tree

level contribution is fully determined by the D0D̄∗0π coupling (g/fπ), the X(3872) mass and its coupling constant to
the neutral D0D̄∗0 channel (gX0 ), which is determined by the residue of the T−matrix element at the X(3872) pole.
We find [26]

Ttree = −2i
ggX0
fπ

√

MXMD∗0MD0~ǫX · ~pπ
(

1

p212 −M2
D∗0

+
1

p213 −M2
D∗0

)

, (1)

where ~ǫX is the polarization vector of the X(3872), ~pπ is the three-momentum of the pion, p12 and p13 are the four
momenta of the π0D0 and π0D̄0 systems, respectively. Taking into account the phase space,

dΓ =
1

(2π)3
1

32M3
X

|T |2dm2
12dm

2
23 (2)

with the invariant masses m2
12 = p212 and m2

23 = (M2
X +m2

π0 +2M2
D0 −m2

12 − p213) of the final π0D0 and D0D̄0 pairs,
we readily obtain

Γtree =
g2

192π3f2
π

(

gX0
MD0MD∗0

MX

)2 ∫ (MX−M
D0 )

2

(M
D0+m0

π
)2

dm2
12

×
∫ (m2

23)(max)

(m2
23)(min)

dm2
23

(

1

p212 −M2
D∗0

+
1

p213 −M2
D∗0

)2

|~pπ|2 (3)

where |~pπ| = λ1/2(M2
X ,m

2
23,m

2
π0)/2MX is the pion momentum in the X(3872) center of mass frame [ λ(x, y, z) =

x2 + y2 + z2 − 2(xy + yz + xz)]. In addition, for a given value of m2
12, the range of m2

23 is determined by:

(m2
23)(max,min) = (E∗

D + E∗

D̄)2 − (p∗D ∓ p∗D̄)2 (4)

with E∗

D = (m2
12 −m2

π0 +M2
D0)/2m12 and E∗

D̄
= (M2

X −m2
12 −M2

D0)/2m12 the energies of the D0 and D̄0 in the m12

rest frame, respectively, and p∗
D,D̄

the moduli of their corresponding three momenta. In Ref. [26], we found

Γ(X(3872) → D0D̄0π0)tree = 44.0+2.4
−7.2

(

42.0+3.6
−7.3

)

keV, (5)

where the values outside and inside the parentheses are obtained with UV Gaussian cutoffs of Λ = 0.5 and 1 GeV,
respectively, and the errors (grey bands in Fig. 2) reflect the uncertainty in the inputs (MX(3872) and the ratio of
decay amplitudes for the X(3872) → J/ψρ and X(3872) → J/ψω decays).
Since we published these results, new high precision measurements of the masses of the D0 and D∗0 mesons have

become available [27, 28], which have led to a more precise determination of the X(3872) binding energy, B = 13±192
keV [28]. To obtain the central values and the errors of Eq. (5) and the 68% confident level (CL) bands displayed
in Fig. 2, we used B = 160 ± 170 keV, and a Monte Carlo simulation was performed to propagate errors5. In
the simulation, we rejected X(3872) binding energies values smaller than 10 keV, and those values were set to this
minimum value. This effectively amounts to consider B = 160+170

−150 keV, since the Gaussian distribution of binding
energies was truncated. We slightly decreased the lower error to guaranty a bound state with a CL larger than 68%,
since the scheme followed in [26] only allows the computation of the width when the X(3872) state is bound. This

binding energy range leads to gX0 = 0.35+0.08
−0.18 (0.34

+0.07
−0.18) GeV−1/2 (the two values correspond to the Λ = 0.5 and

1 GeV choices of the UV regulator), which is not compatible with zero6. Thus, the lower grey bands in Fig. 1 turn
out not to be compatible with a zero width either. However, the new determination of B = 13 ± 192 keV makes

5 The error on the threshold energy (MD0 +MD∗0), ∼120 keV, was not taken into account in Ref. [26].
6 In [26], larger lower errors for the coupling gX0 = 0.35+0.08

−0.29 (0.34+0.07
−0.29) GeV−1/2 were quoted. These correspond to a minimum of the

binding energy (∼ 0.1 keV) much closer to zero, though in the calculation of the width, the 10 keV cut, mentioned above, was used.



5

FIG. 2: X(3872) → D0D̄0π0 partial decay width as a function of C0A. The UV cutoff is set to Λ = 0.5 GeV (1 GeV) in the
left (right) panel. The blue error bands contain DD̄ FSI effects, while the grey bands stand for the tree level predictions (see
Ref [26] for details).

much more probable the very low binding energies close to zero, or an unbound resonance. In this case, we would like
to point out that the decay width should decrease, and eventually should vanish, as the binding energy approaches
zero. This is because for very small binding energies, all the couplings of a bound state tend to zero when the mass
of the bound state gets closer to the lowest threshold [29]. For the case of the X(3872), this was re-derived in [7]

and explicitly shown that both the neutral X(3872)D0D̄∗0 (gX0 ) and charged X(3872)D+D̄∗− couplings scale as B
1
4 .

Because of the quite limited phase space available in this p−wave decay, the decay width, however, increases very
rapidly as the binding energy departs from zero. In any case, the lower errors displayed in Eq. (5) and Fig. 2 should
be now considered with some caution. Moreover, the effect of the D∗0 width, neglected in the present calculation,
becomes sizable for binding energies below 10 keV.
The last two diagrams in Fig. 1 account for the DD̄ → DD̄ final state interaction (FSI) effects, which are considered

by means of the appropriated linear combinations of the isoscalar and isovector T−matrices. To obtain these scattering
amplitudes, the LO contact potential, involving the four LEC’s C0A, C0B , C1A and C1B, is used [14, 26]. As
commented, the X(3872) and Zb(10610) inputs determine only three of the four counter-terms. The value of C0A

is not fixed, and thus the DD̄ FSI effects on this decay are not fully determined. As can be seen in Fig. 2, these
effects might be quite large, because for a certain range of C0A values, a near-threshold isoscalar DD̄ bound state
could be dynamically generated [13, 14]. If in future experiments the partial decay width is measured, a significant
deviation from the predicted tree level value will indicate a FSI effect, which might be used to extract the value of
C0A. However as discussed above, this could be obscured if turned out that the actual binding energy of the X(3872)
state is smaller than let us say 10 keV.
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