21 research outputs found

    Ozone in the Pacific tropical troposphere from ozonesonde observations

    Get PDF
    Ozone vertical profile measurements obtained from ozonesondes flown at Fiji, Samoa, Tahiti, and the Galapagos are used to characterize ozone in the troposphere over the tropical Pacific. There is a significant seasonal variation at each of these sites. At sites in both the eastern and western Pacific, ozone mixing ratios are greatest at almost all levels in the troposphere during the September‐November season and smallest during March‐May. The vertical profile has a relative maximum at all of the sites in the midtroposphere throughout the year (the largest amounts are usually found near the tropopause). This maximum is particularly pronounced during the September‐November season. On average, throughout the troposphere, the Galapagos has larger ozone amounts than the western Pacific sites. A trajectory climatology is used to identify the major flow regimes that are associated with the characteristic ozone behavior at various altitudes and seasons. The enhanced ozone seen in the midtroposphere during September‐November is associated with flow from the continents. In the western Pacific this flow is usually from southern Africa (although 10‐day trajectories do not always reach the continent) but also may come from Australia and Indonesia. In the Galapagos the ozone peak in the midtroposphere is seen in flow from the South American continent and particularly from northern Brazil. High ozone concentrations within potential source regions and flow characteristics associated with the ozone mixing ratio peaks seen in both the western and eastern Pacific suggest that these enhanced ozone mixing ratios result from biomass burning. In the upper troposphere, low ozone amounts are seen with flow that originates in the convective western Pacific

    The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology

    No full text
    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network
    corecore