13 research outputs found

    CO Structure of the 21 μm Source IRAS 22272+5435: A Sign of a Jet Launch?

    Get PDF
    We report the results of radio interferometric observations of the 21 μm source IRAS 22272+5435 in the CO J = 2-1 line. 21 μm sources are carbon-rich objects in the post-asymptotic-giant-branch phase of evolution, which show an unidentified emission feature at 21 μm. Since 21 μm sources usually also have circumstellar molecular envelopes, the mapping of CO emission from the envelope will be useful in tracing the nebular structure. From observations made with the Combined Array for Research in Millimeter-wave Astronomy, we find that a torus and spherical wind model can explain only part of the CO structure. An additional axisymmetric region created by the interaction between an invisible jet and ambient material is suggested

    Alignment between Flattened Protostellar Infall Envelopes and Ambient Magnetic Fields

    Get PDF
    We present 350 μm polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 μm polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15°). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis

    The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and its Application to Mapping the Ultraluminous Galaxy Arp 193

    Get PDF
    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ~2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≾6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in ^(12)CO(2-1) at a linear resolution of ≈70 pc (0".12 × 0".18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ~30% of the dynamical mass in the inner 700 pc of this object with a surface density ~10^4 M_⊙ pc^(−2); we compare these properties to those of the starburst region of NGC 253

    Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI

    No full text
    Work in time-domain astronomy necessitates robust, automated data processing pipelines that operate in real time. We present the BANZAI pipeline which processes the thousands of science images produced across the Las Cumbres Observatory Global Telescope (LCOGT) network of robotic telescopes each night. BANZAI is designed to perform near real-time preview and end-of-night final processing for four types of optical CCD imagers on the three LCOGT telescope classes. It performs instrumental signature removal (bad pixel masking, bias and dark removal, flat-field correction), astrometric fitting and source catalog extraction. We discuss the design considerations for BANZAI, including testing, performance, and extensibility. BANZAI is integrated into the observatory infrastructure and fulfills two critical functions: (1) real-time data processing that delivers data to users quickly and (2) derive metrics from those data products to monitor the health of the telescope network. In the era of time-domain astronomy, to get from these observations to scientific results, we must be able to automatically reduce data with minimal human interaction, but still have insight into the data stream for quality control
    corecore