38 research outputs found

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    Full text link
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single nucleotide polymorphisms (SNPs) with the lowest p-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI related loci was performed in the AN GWAMA. We detected significant associations (p-values < 5×10−5, Bonferroni corrected p < 0.05) for 9 SNP alleles at 3 independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; poverall: 2.47 × 10−06/pfemales: 3.45 × 10−07/pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet induced obese (DIO) mice as compared to age-matched lean controls. We observed no evidence for associations for the look-up of BMI related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation

    Renal Tubular Dysgenesis in a Case of Fetus Acardius Amorphus

    No full text
    Fetus acardius amorphus is a rare congenital malformation characterized by the lack of a functional heart, the presence of a bivascular umbilical cord, as well as a developed and organized skeletal system and partially organized inner organs. Fetus acardii mostly occur in multiple gestations. The pathogenesis of this entity is not clarified yet. It has been hypothesized that, although formation of anastomosing vessels between the co-twin and the anomalous embryo as well as reverse directed blood flow within the umbilical arteries of the weaker twin may allow sufficient blood flow to form rudimentary internal organs, it is insufficient to develop a fully functional heart. We had a case of fetus acardius amorphus, where we performed autopsy as well as routine histology assessment to identify different types of tissues. We showed that our fetus acardius amorphus demonstrated histomorphological features of renal tubular dysgenesis, confirmed by lack of proximal tubules, extramedullary hematopoiesis and increased number of smooth muscle actin positive vessels. This is a novel finding and has not been reported previously.Peer Reviewe

    High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation.

    Get PDF
    Objectives: Patients with anorexia nervosa (AN) are ideally suited to identify differentially methylated genes in response to starvation.Methods: We examined high-throughput DNA methylation derived from whole blood of 47 females with AN, 47 lean females without AN and 100 population-based females to compare AN with both controls. To account for different cell type compositions, we applied two reference-free methods (FastLMM-EWASher, RefFreeEWAS) and searched for consensus CpG sites identified by both methods. We used a validation sample of five monozygotic AN-discordant twin pairs.Results: Fifty-one consensus sites were identified in AN vs. lean and 81 in AN vs. population-based comparisons. These sites have not been reported in AN methylation analyses, but for the latter comparison 54/81 sites showed directionally consistent differential methylation effects in the AN-discordant twins. For a single nucleotide polymorphism rs923768 in CSGALNACT1 a nearby site was nominally associated with AN. At the gene level, we confirmed hypermethylated sites at TNXB. We found support for a locus at NR1H3 in the AN vs. lean control comparison, but the methylation direction was opposite to the one previously reported.Conclusions: We confirm genes like TNXB previously described to comprise differentially methylated sites, and highlight further sites that might be specifically involved in AN starvation processes

    Mutation screen in the GWAS derived obesity gene <em>SH2B1</em> including functional analyses of detected variants.

    Get PDF
    BACKGROUND: The SH2B1 gene (Src-homology 2B adaptor protein 1 gene) is a solid candidate gene for obesity. Large scale GWAS studies depicted markers in the vicinity of the gene; animal models suggest a potential relevance for human body weight regulation. METHODS: We performed a mutation screen for variants in the SH2B1 coding sequence in 95 extremely obese children and adolescents. Detected variants were genotyped in independent childhood and adult study groups (up to 11,406 obese or overweight individuals and 4,568 controls). Functional implications on STAT3 mediated leptin signalling of the detected variants were analyzed in vitro. RESULTS: We identified two new rare mutations and five known SNPs (rs147094247, rs7498665, rs60604881, rs62037368 and rs62037369) in SH2B1. Mutation g.9483C/T leads to a non-synonymous, non-conservative exchange in the beta (&beta;Thr656Ile) and gamma (&gamma;Pro674Ser) splice variants of SH2B1. It was additionally detected in two of 11,206 (extremely) obese or overweight children, adolescents and adults, but not in 4,506 population-based normal-weight or lean controls. The non-coding mutation g.10182C/A at the 3&#39; end of SH2B1 was only detected in three obese individuals. For the non-synonymous SNP rs7498665 (Thr484Ala) we observed nominal over-transmission of the previously described risk allele in 705 obesity trios (nominal p&thinsp;=&thinsp;0.009, OR&thinsp;=&thinsp;1.23) and an increased frequency of the same allele in 359 cases compared to 429 controls (nominal p&thinsp;=&thinsp;0.042, OR&thinsp;=&thinsp;1.23). The obesity risk-alleles at Thr484Ala and &beta;Thr656Ile/&gamma;Pro674Ser had no effect on STAT3 mediated leptin receptor signalling in splice variants &beta; and &gamma;. CONCLUSION: The rare coding mutation &beta;Thr656Ile/&gamma;Pro674Ser (g.9483C/T) in SH2B1 was exclusively detected in overweight or obese individuals. Functional analyzes did not reveal impairments in leptin signalling for the mutated SH2B1

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    Palmer LJ ... GIANT collaborationThe maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10⁻⁵, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10⁻⁰⁶/Pfemales: 3.45 × 10⁻⁰⁷/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.A Hinney ... GIANT ... et al
    corecore