459 research outputs found
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Properties of projectile-fragments in the Ar + Al reaction at 44 A MeV. Comparison with a multisequential decay model
GANIL-EXPResults on projectile fragment–fragment coincidences in the forward direction and for the reaction 40Ar + 27Al at 44 A MeV are presented and compared with the predictions of two different entrance channel models, a two-body and a three-body mechanism both followed by a binary multisequential decay including fission. This analysis shows that many features of the projectile decay products are well accounted for by the binary multisequential decay model. However the results depend critically upon the initial masses and excitation energies of the primary projectile fragments. In this respect, the three-body approach underestimates the excitation energy imparted to the primary fragments whereas the two-body scenario overestimates it. The present data put strong constraints on the initial excitation energy imparted to the primary fragments which appears to be intermediate between the predictions of the two models
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
Isotopic and velocity distributions of Bi produced in charge-pickup reactions of 208Pb at 1 A GeV
Isotopically resolved cross sections and velocity distributions have been
measured in charge-pickup reactions of 1 A GeV 208Pb with proton, deuterium and
titanium target. The total and partial charge-pickup cross sections in the
reactions 208Pb + 1H and 208Pb + 2H are measured to be the same in the limits
of the error bars. A weak increase in the total charge-pickup cross section is
seen in the reaction of 208Pb with the titanium target. The measured velocity
distributions show different contributions - quasi-elastic scattering and
Delta-resonance excitation - to the charge-pickup production. Data on total and
partial charge-pickup cross sections from these three reactions are compared
with other existing data and also with model calculations based on the coupling
of different intra-nuclear cascade codes and an evaporation code.Comment: 20 pages, 12 figures, background information on
http://www-w2k.gsi.de/kschmidt
Cross-sections of spallation residues produced in 1.A GeV 208Pb on proton reactions
Spallation residues produced in 1 GeV per nucleon Pb on proton
reactions have been studied using the FRagment Separator facility at GSI.
Isotopic produc- tion cross-sections of elements from Pm to Pb
have been measured down to 0.1 mb with a high accuracy. The recoil kinetic
energies of the produced fragments were also determined. The obtained
cross-sections agree with most of the few existing gamma-spectroscopy data.
Data are compared with different intra nuclear-cascade and evaporation-fission
models. Drastic deviations were found for a standard code used in technical
applications.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett.
Revised version May 12, 200
Dynamical effects in multifragmentation at intermediate energies
The fragmentation of the quasi-projectile is studied with the INDRA
multidetector for different colliding systems and incident energies in the
Fermi energy range. Different experimental observations show that a large part
of the fragmentation is not compatible with the statistical fragmentation of a
fully equilibrated nucleus. The study of internal correlations is a powerful
tool, especially to evidence entrance channel effects. These effects have to be
included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review
Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions
The production of heavy nuclides from the spallation-evaporation reaction of
238U induced by 1 GeV protons was studied in inverse kinematics. The
evaporation residues from tungsten to uranium were identified in-flight in mass
and atomic number. Their production cross-sections and their momentum
distributions were determined. The data are compared with empirical
systematics. A comparison with previous results from the spallation of 208Pb
and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at
http://www-wnt.gsi.de/kschmidt
Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy
The influence of the entrance channel asymmetry upon the fragmentation
process is addressed by studying heavy-ion induced reactions around the Fermi
energy. The data have been recorded with the INDRA 4pi array. An event
selection method called the Principal Component Analysis is presented and
discussed. It is applied for the selection of central events and furthermore to
multifragmentation of single source events. The selected subsets of data are
compared to the Statistical Multifragmentation Model (SMM) to check the
equilibrium hypothesis and get the source characteristics. Experimental
comparisons show the evidence of a decoupling between thermal and compresional
(radial flow) degrees of freedom in such nuclear systems.Comment: 28 pages, 15 figures, article sumitted to Nuclear Physics
Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon
We present an extensive overview of production cross sections and kinetic
energies for the complete set of nuclides formed in the spallation of 136Xe by
protons at the incident energy of 1 GeV per nucleon. The measurement was
performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt).
Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the
largest neutron excess. The kinematic data and cross sections collected in this
work for the full nuclide production are a general benchmark for modelling the
spallation process in a neutron-rich nuclear system, where fission is
characterised by predominantly mass-asymmetric splits.Comment: 18 pages, 14 figure
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
- …