83 research outputs found

    Traffic-Related Air Pollution and QT Interval: Modification by Diabetes, Obesity, and Oxidative Stress Gene Polymorphisms in the Normative Aging Study

    Get PDF
    BACKGROUND. Acute exposure to ambient air pollution has been associated with acute changes in cardiac outcomes, often within hours of exposure. OBJECTIVES. We examined the effects of air pollutants on heart-rate-corrected QT interval (QTc), an electrocardiographic marker of ventricular repolarization, and whether these associations were modified by participant characteristics and genetic polymorphisms related to oxidative stress. METHODS. We studied repeated measurements of QTc on 580 men from the Veterans Affairs Normative Aging Study (NAS) using mixed-effects models with random intercepts. We fitted a quadratic constrained distributed lag model to estimate the cumulative effect on QTc of ambient air pollutants including fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), ozone (O3), black carbon (BC), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) concentrations during the 10 hr before the visit. We genotyped polymorphisms related to oxidative stress and analyzed pollution-susceptibility score interactions using the genetic susceptibility score (GSS) method. RESULTS. Ambient traffic pollutant concentrations were related to longer QTc. An interquartile range (IQR) change in BC cumulative during the 10 hr before the visit was associated with increased QTc [1.89 msec change; 95% confidence interval (CI), -0.16 to 3.93]. We found a similar association with QTc for an IQR change in 1-hr BC that occurred 4 hr before the visit (2.54 msec change; 95% CI, 0.28-4.80). We found increased QTc for IQR changes in NO2 and CO, but the change was statistically insignificant. In contrast, we found no association between QTc and PM2.5, SO2, and O3. The association between QTc and BC was stronger among participants who were obese, who had diabetes, who were nonsmokers, or who had higher GSSs. CONCLUSIONS. Traffic-related pollutants may increase QTc among persons with diabetes, persons who are obese, and nonsmoking elderly individuals; the number of genetic variants related to oxidative stress increases this effect.National Institute of Environmental Health Sciences (ES014663-01A2, P01 ES09825); United States Environmental Protection Agency (R827353, R83241601

    Prolonged Exposure to Particulate Pollution, Genes Associated with Glutathione Pathways, and DNA Methylation in a Cohort of Older Men

    Get PDF
    Background: DNA methylation is a potential pathway linking environmental exposures to disease. Exposure to particulate air pollution has been associated with increased cardiovascular morbidity and mortality, and lower blood DNA methylation has been found in processes related to cardiovascular morbidity

    Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans

    Get PDF
    We empirically examined the strengths and weaknesses of two human genome-wide DNA methylation platforms: rapid multiplexed reduced representation bisulfite sequencing and Illumina’s Infinium BeadChip. Rapid multiplexed reduced representation bisulfite sequencing required less input DNA, offered more flexibility in coverage, and interrogated more CpG loci at a higher regional density. The Infinium covered slightly more protein coding, cancer-associated and mitochondrial-related genes, both platforms covered all known imprinting clusters, and rapid multiplexed reduced representation bisulfite sequencing covered more microRNA genes than the HumanMethylation450, but fewer than the MethylationEPIC. Rapid multiplexed reduced representation bisulfite sequencing did not always interrogate exactly the same CpG loci, but genomic tiling improved overlap between different libraries. Reproducibility of rapid multiplexed reduced representation bisulfite sequencing and concordance between the platforms increased with CpG density. Only rapid multiplexed reduced representation bisulfite sequencing could genotype samples and measure allele-specific methylation, and we confirmed that Infinium measurements are influenced by nearby single-nucleotide polymorphisms. The respective strengths and weaknesses of these two genome-wide DNA methylation platforms need to be considered when conducting human epigenetic studies

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life. We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries. The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect. Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity

    Blood DNA methylation sites predict death risk in a longitudinal study of 12,300 individuals

    Get PDF
    This is the final version. Available on open access from Impact Journals via the DOI in this recordDNA methylation has fundamental roles in gene programming and aging that may help predict mortality. However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)-mapping respectively to BMPR1B, MIR1973, IFITM3, NLRC5, and two intergenic regions-were associated with reduced mortality risk. The remaining three sites (cg17086398, cg12619262, cg18424841)-mapping respectively to SERINC2, CHST12, and an intergenic region-were associated with increased mortality risk. DNA methylation at each site predicted 5%-15% of all deaths. We also assessed the causal association of those sites to age-related chronic diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality risk assessment and preventative care

    A DNA methylation biomarker of alcohol consumption.

    Get PDF
    The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10-7. Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.Medical Research Council (Grant IDs: MC_UU_12015/1, MC_UU_12015/2), Wellcome Trust. Detailed acknowledgements are included in the Supplementary Information that accompanies the paper on the Molecular Psychiatry website

    Blood Leukocyte Dna Methylation Predicts Risk of Future Myocardial infarction and Coronary Heart Disease

    Get PDF
    BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis.

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity
    corecore