293 research outputs found
Changes in nerve conduction velocity in the mouse after acute and chronic administration of nitroimidazoles.
The effect of the nitroimidazoles misonidazole, Ro-05-9963, RGW-608 and metronidazole on nerve conduction velocity (NCV) were measured in the anaesthetized mouse. The compounds were administered by i.p. injection either as a single dose of 1 mg/g (only 0.5 mg/g for RGW-608) or in 36 fractions of 0.15 mg/g over 18 days (only 4 fractions in 2 days for RGW-608). After single doses a reduction in nerve conduction velocity was seen with all the compounds except metronidazole, which had no significant effect. During chronic exposure, a reduction in NCV occurred towards the end of the course of injections. All compounds produced an effect, although RGW-608 was the most neurotoxic, giving the largest reduction in NCV after only 4 injections. After the end of chronic exposure to misonidazole, Ro-05-9963 and metronidazole, recovery to normal took 2-3 weeks
A Constrained Coding Approach to Error-Free Half-Duplex Relay Networks
We show that the broadcast capacity of an infinite-depth tree-structured
network of error-free half-duplex-constrained relays can be achieved using
constrained coding at the source and symbol forwarding at the relays.Comment: To appear in IEEE Transactions on Information Theory, 201
Pamela: development of the RF system for a non-relativistic non-scaling FFAG
The PAMELA project(Particle Accelerator For MEdical
Applications) currently consists of the design of a particle
therapy facility. The project, which is in the design phase,
contains Non-Scaling FFAG, particle accelerator capable
of rapid beam acceleration, giving a pulse repetition rate of
1kHz, far beyond that of a conventional synchrotron. To
realise the repetition rate, a key component of the accelerator
is the rf accelerating system. The combination of a high
energy gain per turn and a high repetition rate is a significant
challenge. In this paper, options for the rf system of
the proton ring and the status of development are presented
Recommended from our members
Analysis of the effects of tumour vascular targeting drugs on the vascular permeability of experimental tumours through multiphoton microscopy.
Mapping femtosecond pulse front distortion and group velocity dispersion in multiphoton microscopy
ABSTRACT Group velocity dispersion (GVD) and pulse front distortion of ultrashort pulses are of critical importance in efficient multiphoton excitation microscopy. Since measurement of the pulse front distortion due to a lens is not trivial we have developed an imaging interferometric cross-correlator which allows us to measure temporal delays and pulse-widths across the spatial profile of the beam. The instrument consists of a modified Michelson interferometer with a reference arm containing a voice-coil delay stage and an arm which contains the optics under test. The pulse replicas are recombined and incident on a 22 × 22 lenslet array. The beamlets are focused in a 0.5 mm thick BBO crystal (cut for Type I second harmonic generation), filtered to remove the IR component of the beam and imaged using a 500 fps camera. The GVD and pulse front distortion are extracted from the temporal stack of beamlet images to produce a low resolution spatio-temporal map
Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.EPSR
Recommended from our members
Measurement of Vascular Permeability from Multiphoton Microscopy of Experimental Tumours
HER2-HER3 heterodimer quantification by FRET-FLIM and patient subclass analysis of the COIN colorectal trial
BACKGROUND: The phase 3 MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS: HER2-HER3 dimerization was quantified by "FLIM Histology" in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy +/-cetuximab. Bayesian latent class analysis (LCA) and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation and cetuximab on progression-free survival (PFS) and overall survival (OS). All statistical tests were two-sided. RESULTS: LCA on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS: 1624 days [95%CI=1466-1816] vs 461 [95%CI=431-504]): Class 1 (15.6%) showed a benefit from cetuximab in OS (HR = 0.43 [95%CI=0.25-0.76]; p = 0.004). Class 2 showed an association of increased HER2-HER3 with better OS (HR = 0.64 [95%CI=0.44-0.94]; p = 0.02). A class prediction signature was formed and tested on an independent validation cohort (N = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (N = 1,630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS: Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment
Precision surgery:the role of intra-operative real-time image guidance - outcomes from a multidisciplinary European consensus conference
Developments within the field of image-guided surgery are ever expanding, driven by collective involvement of clinicians, researchers, and industry. While the general conception of the potential of image-guided surgery is to improve surgical outcome, the specific motives and goals that drive can differ between the different expert groups. To establish the current and future role of intra-operative image guidance within the field of image-guided surgery a Delphi consensus survey was conducted during the 2(nd) European Congress on Image-guided surgery. This multidisciplinary survey included questions on the conceptual potential and clinical value of image-guided surgery and was aimed at defining specific areas of research and development in the field in order to stimulate further advances towards precision surgery. Obtained results based on questionnaires filled in by 56 panel experts (clinicians: N=30, researchers: N=20 and industry: N=6) were discussed during a dedicated expert discussion session during the conference. The outcome of this Delphi consensus is indicative of the potential improvements offered by image-guided surgery and of the need for further research in this emerging field, that can be enriched by the identification of reliable molecular targets
- …